
The child as hacker: Building more
human-like models of learning

by

Joshua S. Rule

Submitted to the Department of Brain and Cognitive Sciences
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Cognitive Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2020

© Massachusetts Institute of Technology 2020. All rights reserved.

Author .
Department of Brain and Cognitive Sciences

September 5, 2020

Certified by. .
Joshua B. Tenenbaum

Professor of Computational Cognitive Science
Thesis Supervisor

Accepted by .
Rebecca Saxe

John W. Jarve (1978) Professor of Brain and Cognitive Sciences
Associate Head, Department of Brain and Cognitive Sciences

Affiliate, McGovern Institute for Brain Science
Chairman, Department Committee on Graduate Theses

2

The child as hacker: Building more human-like models of learning

by

Joshua S. Rule

Submitted to the Department of Brain and Cognitive Sciences
on September 5, 2020, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy in Cognitive Science

Abstract

Cognitive science faces a radical challenge in explaining the richness of human learning and
cognitive development. This thesis proposes that developmental theories can address the
challenge by adopting perspectives from computer science. Many of our best models treat
learning as analogous to computer programming because symbolic programs provide the
most compelling account of sophisticated mental representations. We specifically propose
that learning from childhood onward is analogous to a style of programming called hacking—
making code better along many dimensions through an open-ended and internally-motivated
set of diverse values and activities. This thesis also develops a first attempt to formalize and
assess the child as hacker view through an in-depth empirical study of human and machine
concept learning. It introduces list functions as a domain for psychological investigation,
demonstrating how they subsume many classic concept learning tasks while opening new
avenues for exploring algorithmic thinking over complex structures. It also presents HL,
a computational learning model whose representations, objectives, and mechanisms reflect
core principles of hacking. Existing work on concept learning shows that learners both
prefer simple explanations of data and find them easier to learn than complex ones. The
child as hacker, by contrast, suggests that learners use mechanisms that dissociate hypothesis
complexity and learning difficulty for certain problem classes. We thus conduct a large-scale
experiment exploring list functions that vary widely in difficulty and algorithmic content to
help identify structural sources of learning difficulty. We find that while description length
alone predicts learning, predictions are much better when accounting for concepts’ semantic
features. These include the use of internal arguments, counting knowledge, case-based and
recursive reasoning, and visibility—a measure we introduce to modify description length
based on the complexity of inferring each symbol in a description. We further show that
HL’s hacker-like design uses these semantic features to better predict human performance
than several alternative models of learning as programming. These results lay groundwork
for a new generation of computational models and demonstrate how the child as hacker
hypothesis can productively contribute to our understanding of learning.

Thesis Supervisor: Joshua B. Tenenbaum
Title: Professor of Computational Cognitive Science

3

4

Acknowledgments

First thanks go to Josh Tenenbaum and Steve Piantadosi. Chapters 1–2 contain material

taken from a paper we wrote together (Rule et al., in press), but every page profits from

their influence. They are the reason the rest of this thesis uses we rather than I. They

not only contributed their effort and ideas, but they taught me how to contribute my own.

Who I am as a scientist deeply reflects what I have learned from them. Thank you both

for believing in the importance of our work and for guiding me to make it far better than

it would have been otherwise. Josh, thank you for teaching me to use nagging doubts as

stepping stones to new insights and for being the first to invite me into the awe-inspiring and

life-changing community that is MIT. Steve, thank you for teaching me to try the simplest

possible thing first, ideally in the next half-hour, and for repeatedly helping me distill the

sea of my confusion into a clear hypothesis.

I cannot imagine better people to shape this work than my thesis committee. Susan

Carey, you transformed my thinking about the depths to be mined in understanding the

young mind. Thank you for teaching me that what is actual is possible, that computational

models must make contact with empirical facts (the more, the better), and for demonstrating

how a deep understanding of learning builds on all the fields I love most: mathematics,

psychology, philosophy, and computer science. Laura Schulz, thank you for challenging me

to take seriously the richness, inventiveness, and raw power of children’s learning and for

telling me flat out that not every contribution I made had to come in the form of a model.

I needed to hear that.

I am also immensely grateful to the broader intellectual community that has introduced

me to cognitive science. Cocosci and Colala have simultaneously sharpened and broad-

ened my thinking about the mind. Special thanks to the program inductors—especially

Eyal Dechter, Eric Schulz, Lucas Morales, Kevin Ellis, Max Nye, Zenna Taveres, Luc Cary,

and Andrés Campero. I am also grateful for many good conversations with Liz Spelke,

Tomer Ullman, John McCoy, Andrew Cropper, Josh Hartshorne, Max Kleiman-Weiner, Tim

O’Donnell, and Brenden Lake. My time in BCS owes much to the dedicated work of Denise

Heintze, Kris Kipp, Sierra Vallin, and Julianne Gale Ormerod and the generous funding of

5

the NSF Graduate Fellowship, the Stark Graduate Fellowship, and the Leventhal Fellowship.

Many others have deeply shaped my own cognitive development, including: Bob Wengert,

Gerald DeJong, Dan Roth, Paul Drelles, Gordon Brown, Keith Hamilton, Bob Parker, and

Ted Malt. Special thanks to Max Riesenhuber for his role in my decision to pursue academic

research, his support and friendship over the years, and his challenging me to apply to MIT

in the first place. Michel Selva, thank you for wise advice and friendly counsel.

I am nearly overwhelmed when I think of the debt of gratitude I owe to my dearest

friends. Thanks to the Champaign crew—Alyssa Combs, Micah & Priscilla Putman, Josh

& Julie Birky, and Josh & Jess Kober—your friendship has often been felt deepest when

needed most. To Aidan & Sarah McCarthy, Austin & Becca Ward, Caleb & Lauren Hintz,

Bre & Wes Rieth, Matt & Lynnae Terrill, Kevin & Kelsey McKenzie, and Meg & Adam

Norris: thank you for loving me well and for making Aletheia Church my spiritual family in

Cambridge. Donny Fisher, thank you for keeping me sane, too, through the many miles we

have walked together. I hope there are many more.

My family has been a constant and inexhaustible source of support. Adam, I am so

glad we share the field of cognitive science, as well as a love of walking wild places fast

and far. Oresta, thank you for catching my throw-away jokes on family calls and ensuring

I had sufficient ice cream to study productively. AJ & Ariel were a constant source of en-

couragement during our time in Boston. Shelley, Daniel, Kim, & Matt have loved me and

my family even as my own attention has been consistently devoted to model runs, writing,

and analysis. Mom, Dad, Jim, & Laura: I would not be writing these words without your

help. Mom & Dad, I thank you especially for your support, prayers, and willingness to do

anything that might help me. Ana and Forest, you are by far the most successful mod-

els of intelligence I have collaborated on to date. You bring me so much joy. Thank you

for teaching me how little I really understand about the mind. Amy, I cannot even begin

to describe how grateful I am for you or this thesis would be at least twice as long as it

is. You have helped me to be more than I could be on my own and to do what, at times,

I did not think possible. You are more than I have ever hoped for. You take my breath away.

Soli Deo gloria

6

Contents

1 Introduction 15

1.1 Three observations about learning . 20

1.2 Knowledge as code . 23

1.3 Learning as programming . 25

2 The child as hacker 29

2.1 From programming to hacking . 29

2.1.1 The many values of hacking . 31

2.1.2 The many activities of hacking . 32

2.1.3 The intrinsic motivation of hacking 32

2.1.4 Putting it all together . 34

2.2 Hacking early arithmetic . 36

2.3 Hacking intuitive theories . 42

2.4 Hacking and other metaphors . 44

2.4.1 The child as scientist . 44

2.4.2 Resource rationality & novelty search 47

2.4.3 Workshop and evolutionary metaphors 48

2.5 Prospects for a computational account of learning 50

3 List functions as a domain for psychological investigation 53

3.1 The domain of list functions . 57

3.2 Capturing classic domains and developmental case studies 73

3.3 Conclusion . 80

7

4 HL: A hacker-like model of learning 81

4.1 Representation: Term rewriting as a model of mental representations 84

4.1.1 Meaning through conceptual role . 84

4.1.2 The value of domain-specific languages 86

4.1.3 Term rewriting . 97

4.2 Learning Mechanisms: Learning as iterative meta-programming 102

4.2.1 Hypothesis-and-goal-driven search . 103

4.2.2 Hacking as iterative revision . 104

4.2.3 HL’s learning mechanisms . 108

4.2.4 Chaining mechanisms into meta-programs 112

4.2.5 Monte Carlo tree search . 118

4.3 Learning Objectives: simple, accurate, discoverable, and well-formed 124

4.3.1 Abstract error maps . 124

4.3.2 Avoiding premature optimization . 125

4.3.3 A prior assessing discoverability . 127

4.3.4 A prior assessing simplicity . 128

4.3.5 A likelihood assessing accuracy . 130

4.3.6 A likelihood assessing well-formedness 131

4.3.7 Two objectives for HL . 132

4.4 Conclusion . 136

5 Human learning of list functions: Structural sources of difficulty 137

5.1 Introduction . 137

5.2 Method . 140

5.2.1 Participants . 141

5.2.2 Materials . 142

5.2.3 Procedure . 144

5.3 Results . 146

5.4 Discussion . 157

8

6 Human-like learning of list functions 163

6.1 Introduction . 163

6.2 Concepts . 168

6.3 Models . 169

6.3.1 Enumeration . 171

6.3.2 Fleet . 171

6.3.3 Metagol . 173

6.3.4 RobustFill . 175

6.3.5 HL . 176

6.4 Results . 177

6.5 Discussion . 184

7 Conclusion 189

7.1 Representations . 192

7.2 Objectives . 194

7.3 Learning mechanisms . 195

7.4 Conceptual systems . 197

7.5 Hacking . 198

7.6 Developmental phenomena . 199

7.7 Final thoughts . 201

A List Functions 203

References 241

9

10

List of Figures

1-1 Several classes of programs expressed as symbolic images. 23

2-1 Overview of the child as hacker hypothesis. 30

2-2 Snapshots of Linux kernel development. 34

2-3 Three steps toward a mature understanding of counting. 40

2-4 Learning about infinity through number grammars and the successor function. 40

2-5 Learning kinship by compressing observations. 43

2-6 Learning Mendelian inheritance by compressing observations. 45

3-1 Stimuli from key experimental domains for inductive concept learning. 54

3-2 A hierarchical Bayesian model of list functions. 59

4-1 Example data for a list function problem. 88

4-2 A language which could be learned from Figure 4-1 using an approach in which

each concept is described in terms of a fixed set of primitives. 89

4-3 A language which could be learned from Figure 4-1 using an intermediate

approach in which new concepts can be learned but must resolve to a fixed

set of primitives. 90

4-4 A language which could be learned from Figure 4-1 using an intermediate

approach in which new concepts are introduced as needed, but all concepts

are treated like named functions and each argument must be a variable. . . . 92

4-5 A language which could be learned from Figure 4-1 when allowing reuse,

variable binding, primitive addition and removal, and pattern-matching. Note

the use of patterns for pulling lists into parts. 93

11

4-6 A visual overview of Monte Carlo Tree Search. 120

5-1 A sample display from the list transformation paradigm used in the behavioral

experiment. 141

5-2 (Top): Mean accuracy on each concept. (Bottom): The percentage of partic-

ipants with each possible number of correct responses for each concept. . . . 145

5-3 Histogram and Gaussian kernel density estimate of mean concept-level per-

formance by participant. 146

5-4 Logistic model predictions of mean human accuracy by concept based on

description length in a rich model LOT. 147

5-5 Logistic model predictions of mean human accuracy by concept based on

English description length. 148

5-6 Logistic model predictions of mean human accuracy by concept using semantic

features. 153

5-7 Regression coefficients from the feature-based model with 95% CIs, sorted by

absolute value. 155

5-8 Program-induction-based model predictions of mean human accuracy by con-

cept. 157

6-1 Mean accuracy on each concept by model. 178

6-2 A comparison of program induction models plotting mean model accuracy

against mean human accuracy. 181

6-3 Difference of mean model accuracy from mean human accuracy for each con-

cept by model. 182

6-4 Differences between mean human accuracy and mean model accuracy. 183

6-6 Regression coefficients for a series of feature-based logistic models, one for

humans as well as for each learning model. 184

7-1 Othello paradigm: (a) the initially presented grid of binary chips; (b) a partial

demonstration for (c); (c–e) three complete patterns. 200

12

List of Tables

1.1 A sampling of domains requiring algorithmic knowledge formalizable as pro-

grams, with motivating examples. 23

2.1 Some dimensions of value in hacking. 31

2.2 Some common activities used in hacking. 33

2.3 Small number addition algorithms. 37

2.4 A comparison of three families of developmental metaphors. 46

3.1 Church encodings for Booleans, lists, numbers, and 𝑌 , a fixpoint operator

used to implement recursion. 71

4.1 A comparison of the languages in Figures 4-2–5 based on their description

lengths as TRSs. 95

4.2 Comparing intuitive theories and DSLs, inspired by (Murphy & Medin, 1985). 96

4.3 An example application of each learning mechanism implemented in HL. . . 109

5.1 The Hindley-Milner typesystem used in the concept language. 142

5.2 The primitives from which the concepts were formed 143

5.3 Example concepts in the model LOT. 144

5.4 20 concepts whose length-based predictions strongly strongly deviate from

human performance. 150

6.1 The primitives initially provided to each model. 170

6.2 The metarules used by the Metagol model. 174

13

6.3 Concepts for which HL performs above 25%, while alternative models fail

to give a single correct response, along with a representative meta-program

learned by HL, HL’s mean accuracy, and human mean accuracy. 180

6.4 A summary of model performance relative to human learners. 183

14

Chapter 1

Introduction

Human cognitive development is qualitatively unique. Though humans are born unusually

helpless, they quickly transform a limited set of core cognitive abilities into an unparalleled

cognitive repertoire including: intuitive theories for domains like physics and biology, for-

mal theories in mathematics and science, language comprehension and production, complex

perceptual and motor skills, the ability to introspect on their own emotional and cognitive

processes, and the capacity for creative expression. People also learn to learn, produc-

ing higher-order knowledge that enriches existing concepts and enhances future learning.

Human-like performance in any one of these domains seems substantially beyond current

efforts in artificial intelligence. Yet, people essentially acquire these abilities simultaneously

and universally. Given the right kinds of practice, humans can even develop world-class

expertise and discover new ideas that radically alter humanity’s understanding of the world.

The foundational fields of cognitive science—including philosophy, psychology, neuroscience,

and computer science—face a radical challenge in explaining the richness of human develop-

ment.

Early discussions of cognition often polarized on the role of learning (Macnamara, 1999).

Empiricists like Aristotle (de Anima), Locke (1690), and others argued that people are

born with an empty conceptual repertoire and learn entirely from experience. Nativists like

Plato (Meno, Phaedo, Apology) argued that true learning is impossible, a view prominently

defended in recent times by Fodor (1980; cf. Carey, 2015). A long line of experimental

work suggests both views are wrong. Humans instead start their lives with a small but

15

surprisingly rich body of conceptual and high-level perceptual capabilities collectively called

core cognition or core knowledge (Barner & Baron, 2016; Carey, 2009; Spelke & Kinzler, 2007;

Kinzler & Spelke, 2007). Core cognition supports reasoning about magnitudes, distances and

geometries, objects and physical interactions, and agents and social interactions. While it is

unclear how much of what has been attributed to core cognition is available at birth and how

much develops quickly through experience, it is clear that the initial starting state interacts

with the structure of the world in such a way that these core cognitive abilities reliably

emerge over the first years of life. Still, the question remains: what exactly is learning?

To help answer this question, this thesis develops a framework for understanding learning

and cognitive development through the lens of computer science. The resulting view has the

potential to support a unified and computationally precise account of a broad variety of

learning phenomena while simultaneously doing justice to the richness and variety of goals

and processes which learners bring to bear during development. This is a tall order, and we

fill it in the following way.

First, we introduce the child as hacker as a hypothesis about the representations, ob-

jectives, and processes of distinctively human-like learning. Like the child as scientist view

(Piaget, 1955; Carey, 1985, 2009; Gopnik, 2012; Schulz, 2012b), the child as hacker is both

a fertile metaphor and a source of concrete hypotheses about cognitive development. It

also suggests a roadmap to what could be a unifying formal account of major phenomena

in development. A key part of the child as hacker is the idea of learning as programming,

which holds that symbolic programs—i.e. code—provide the best formal knowledge repre-

sentation we have. Learning therefore becomes a process of creating new mental programs.

The overall approach is a modern formulation of Fodor’s (1975) language of thought (LOT).

The rest of Chapter 1 reviews support for learning as programming and argues that while

on increasingly solid ground as a computational-level theory (Marr, 1982), it remains under-

specified. Chapter 2 extends the idea of learning as programming by drawing inspiration

from hacking, an internally-driven approach to programming emphasizing the diverse goals

and means humans use to make code better. Our core claim is that the specific represen-

tations, motivations, values, and techniques of hacking form a rich set of largely untested

hypotheses about learning.

16

This rest of this thesis develops a first attempt to formalize and assess the child as hacker

hypothesis through an in-depth empirical study of human and machine concept learning.

While we are deeply inspired specifically by children’s learning, many of the issues at stake

are hypothesized to be relevant across a learner’s lifespan. Because it is often easier to collect

rich data from adults than from children, the focus of this study is adult concept learning.

The findings are likely to apply to child learners, too, but we mark specifically developmental

applications as future directions.

In Chapter 3, we present list functions as a domain for studying human concept learn-

ing. The premise of the domain is simple: concepts consist of computable functions from lists

to lists. We focus specifically on concepts concerning lists of natural numbers. This domain

has a long history in artificial intelligence (Green et al., 1974; Shaw et al., 1975; Biermann,

1978; Green, 1981; Smith, 1984; Feser et al., 2015; Osera & Zdancewic, 2015; Polikarpova

et al., 2016; Cropper et al., 2019) but is relatively unstudied in cognitive psychology. We

show how it nonetheless combines the best features of many classic concept learning tasks.

Inductive learning can be framed as inference in a hierarchical generative model, and this

model supports a variety of related tasks. The domain is familiar to participants and allows

them to bring rich background knowledge to bear during learning. It contains complex ob-

jects with intricate internal structure. Crucially, it contains natural numbers and makes use

of them as symbolic, ordinal, and cardinal values. It supports algorithmically sophisticated

concepts—under the right assumptions, the domain is computationally universal. Despite

all this richness, lists and numbers are well-studied objects with simple formal descriptions

and well-established libraries of related concepts. This makes it straightforward to construct

model LOTs whose concepts vary smoothly from trivially easy to formidably difficult. We

further show that list functions actually subsume many classic tasks and capture the dy-

namics of key developmental achievements while making it possible to explore richer kinds

of algorithmic thinking over complex structures. We argue that its long computational his-

tory and potential as a domain for psychological investigation make it a prime candidate

for investigating hacking as a metaphor for learning and for studying cognitive development

more broadly.

Next, we introduce HL (Hacker-Like), a computational model of inductive concept learn-

17

ing which takes important steps toward applying the lessons of the child as hacker. Chapter

4 describes the model in detail. Each aspects of the model’s architecture—including its rep-

resentations, objectives, and learning mechanisms—is inspired by a phenomenon in human

learning interpreted through the lens of hacking. Briefly, HL models learning as the iterative

development of an entire programming language, capturing the dynamics of developing a

domain-specific language similar to the way that humans develop conceptual systems gov-

erned by inferential role semantics. It uses complex objective functions that vary based on

the task at hand, favoring accuracy, well-formedness, discoverability, and simplicity. These

objectives allow it to avoid premature optimization, exploring suboptimal, even wrong hy-

potheses during search, while favoring the best hypotheses during later decision-making. It

also permits a sort of queried-guided search (Chu et al., 2019). Finally, by using a diverse

set of structured learning mechanisms, HL reparameterizes search. Rather than searching

directly for a specific language, it searches a space of meta-programs describing compact

generative processes for creating programming languages, and is able to rapidly discover

certain kinds of complex languages. It thus performs a sort of hypothesis-and-goal-driven

search related to the iterative revision and refactoring practiced by hackers. These features

are all illustrated using list functions.

There are strong normative arguments (Solomonoff, 1964a; Jefferys & Berger, 1992;

Chater & Vitányi, 2003; Baum, 2004; Grünwald, 2007) suggesting that, all else being equal,

people prefer a simple explanation of data over a complex one. Recent empirical work has

also demonstrated that, in many cases, the difficulty of learning is strongly related to a for-

mal measure of simplicity, such as the size of the hypothesis space or the description length

of the concept in a domain-appropriate model LOT (Feldman, 2000; Tenenbaum, 1999, 2000;

Goodman, Tenenbaum, Feldman, et al., 2008; Piantadosi et al., 2012, 2016). The child as

hacker, by contrast, emphasizes the richess of learning and predicts that learners make use of

a diversity of structure-sensitive values and learning mechanisms, some of which may disso-

ciate the complexity of learning a hypothesis from its description length in a target LOT. As

a result, the complexity of learning may be more strongly related to other structural features

of a concept than to its description length or the size of its hypothesis space.

To investigate these ideas empirically, Chapter 5 introduces a benchmark set of 250

18

list functions and assesses human learning on each. We encode each task as a program in

a rich, domain-appropriate model LOT. We analyze these programs for structural features

describing a variety of syntactic and semantic properties. Among these are multiple measures

of description length and multiple measures of visibility, a concept we introduce to describe

how transparently each symbol in a program can be inferred from observed input/output

pairs. Other measures relate to recursive, conditional, and numerical reasoning, including the

use of counting knowledge. We then report a large scale online behavioral experiment testing

human learning for the 250 concepts. We find that while our description length measures are

predictive, the predictions becomes significantly more accurate when taking semantic features

into account. Finally, we show that computational models of learning whose behavior is

intrinsically connected to description length, specifically grammar-based enumeration and

random sampling, do a much poorer job than HL, a model sensitive to semantic structure, in

describing human performance across the entire dataset. This work suggests that humans—

unlike simple learning algorithms based on sampling or exhaustive enumeration—are strongly

sensitive to structural features in data that can be used to infer semantic content. They may

be able to navigate their hypothesis spaces using learning mechanisms which dissociate the

complexity of the concept from the complexity of search. As a result, they are able to

quickly learn complex concepts, finding the simplest explanation of the data in a way that

can be largely disconnected from the complexity of the explanation itself. While humans

strongly prefer simple explanations, and while simplicity is sometimes the primary predictor

of learning difficulty, there is often much more to learning than simplicity alone.

Chapter 6 investigates these ideas computationally. It compares HL with several bench-

mark program-induction-based models of concept learning in terms of their ability to predict

human learning performance for a 100-concept subset of the 250 list functions. These con-

cepts were selected to represent a broad spectrum of the features analyzed in Chapter 5 while

remaining tractable for current learning models. HL implements the idea of learning through

a diversity of structure-sensitive learning mechanisms. The remaining models each exemplify

paradigmatic approaches to learning as programming: exhaustive search, stochastic search,

proof-guided search, and neural program synthesis. HL does a better job of explaining par-

ticipants’ patterns of success and failures across these tasks than the competing models and

19

captures important aspects of human learning currently absent in the other models. HL

does not close the gap entirely, so Chapter 7 describes a series of critical next steps for

hacker-like models of learning as well as the child as hacker hypothesis more broadly.

1.1 Three observations about learning

The puzzle of learning and cognitive development—how humans get so much from so little

so quickly—lies at the heart of cognitive science. There are many kinds of knowledge and

forms of learning, and the mind appears to be equipped with varying levels of domain-specific

support for each (Carey, 2009; Fodor, 1983). Some conclude after a matter of seconds, leaving

the sensation of blinding insight (Sternberg & Davidson, 1995), while others require arduous

years of seemingly piecemeal effort (Davidson et al., 2012; Barner, 2017). No matter what is

learned or over what timespan, however, resolving the puzzle requires describing four things:

the state of a mind before learning, the state of that mind after learning, how the mind

transitions between these states, and the objective which this transition serves.

Three general observations suggest a way to begin applying this framework. Consider

the concept 𝑐1. It represents a way of transforming a list of numbers into a single number,

so read 𝑐1(𝑥) = 𝑦 as 𝑐1 transforms 𝑥 into 𝑦. We describe 𝑐1 in more detail shortly, but take

a moment now to determine what it does before continuing:

𝑐1([2, 5, 1, 5, 2, 6]) = 1

𝑐1([6]) = 0

𝑐1([5, 5, 5]) = 2

𝑐1([]) = 0

𝑐1([3, 9, 5, 3, 3, 4, 3]) = 3

𝑐1([6, 2, 6, 2, 6, 2, 2]) = 2

𝑐1 might eventually be learnable, but it is difficult with so few examples and such little con-

text. This highlights the first observation: there are concepts and conceptual systems which

20

humans can learn but only with difficulty. Category theory, particle physics, and gourmet

cooking, for example, are each enormously complex systems of concepts that thousands of

people have acquired, but only with extended effort. Now, consider the concepts 𝑐2, 𝑐3, and

𝑐4 (which takes two arguments) below, and try to determine what they do:

𝑐2([1, 2, 3]) = 1 𝑐3([5, 2, 6]) = [2, 6] 𝑐4(3 [2, 4, 3]) = 1

𝑐2([0, 8, 6, 2]) = 0 𝑐3([3]) = [] 𝑐4(0 [1, 4, 0, 0]) = 2

𝑐2([6, 1]) = 6 𝑐3([1, 6, 4, 6]) = [6, 4, 6] 𝑐4(9 [7, 2, 5, 8]) = 0

𝑐2([9, 2, 7]) = 9 𝑐3([3, 3, 0, 1, 9]) = [3, 0, 1, 9] 𝑐4(7 [7, 3, 8, 7, 7]) = 3

These three concepts lead to the second observation: some concepts are easy to learn. For

many people, 𝑐2, 𝑐3, and 𝑐4 are much easier to learn than 𝑐1. 𝑐2 takes a list and provides

the first item in it, the item at the head of the list. 𝑐3 takes a list and returns the same list

after removing its head, what we might call the tail of the list. 𝑐4 takes a number and a list

and counts how many times the number appears in the list. These concepts may have been

immediately obvious or required a moment of thought, but they built directly on things you

probably already knew.

This leads to the third observation: it is much easier to learn difficult concepts given

the right curriculum of antecedent concepts. Such a curriculum should teach a series of

antecedents making the difficult concepts simpler to express but should also avoid concepts

unnecessary for expressing the difficult concepts. The curriculum should be tailored to

the conceptual system in question. Something as complex and abstract as category theory

becomes much easier after learning about arithmetic, sets, and algebra, but is helped com-

paratively little by learning about north Indian geography or bicycle maintenance. 𝑐2, 𝑐3,

and 𝑐4 were easy only because most readers already have the antecedent concepts of lists and

counting. A reader lacking them would probably need a curriculum teaching those things

first (instead of mountaineering or accordion). Just as 𝑐2–𝑐4 depend on counting and lists,

so 𝑐1 depends on 𝑐2–𝑐4; they are a curriculum for 𝑐1. Briefly reconsider the examples of 𝑐1

on the previous page in light of them.

21

Together, these three concepts provide a compact way to explain 𝑐1, which counts the

number of times the head of a list appears in its tail:

𝑐1(𝑥𝑠) ≡ 𝑐4(𝑐2(𝑥𝑠) 𝑐3(𝑥𝑠)).

For example:

𝑐1([6, 8, 1, 6, 2, 4, 6]) = 𝑐4(𝑐2([6, 8, 1, 6, 2, 4, 6]) 𝑐3([6, 8, 1, 6, 2, 4, 6]))

= 𝑐4(6 𝑐3([6, 8, 1, 6, 2, 4, 6]))

= 𝑐4(6 [8, 1, 6, 2, 4, 6])

= 2

The overall intuition these observations give is that concepts are built compositionally from

other concepts, and having the right concepts at the right time is what makes learning

possible. On this view, the initial state is some initial set of concepts, and the final state

is some other set of concepts. The mechanism of change iteratively invents and combines

concepts according to some curriculum, evolving the concepts of the initial state toward

those of the final state. The objective is uncovering a better description of the data, in all

the richness of what we could mean by better. This may not be the only kind of learning,

but it does seem to describe at least some of what they do.

Several other lines of reasoning support these intuitions and suggest that cognition oc-

curs, or can be modeled as occurring, in something more structured than a chaotic soup of

concepts: a mental language or language of thought (LOT; Turing, 1936; Fodor, 1975; Fodor

& Pylyshyn, 1988; Fodor, 2008). Each concept is an expression in this language. Explaining

learning and development then becomes a problem of specifying the trajectory of the LOT

and any accompanying machinery from infancy onward. To avoid a form of radical nativism

in which every possible concept is either known from birth or no more than a short search

away (Fodor, 1975; Fodor, 1980), specifying change includes not only changes in how the

LOT combines concepts for ad hoc use, but also in how the LOT itself changes (Gopnik,

1983; Carey, 1985, 2015).

22

Logic first-order, modal, deontic logic
Mathematics number systems, geometry, calculus
Natural language morphology, syntax, number grammars
Sense data audio, images, video, haptics
Computer languages C, Lisp, Haskell, Prolog, LATEX
Scientific theories relativity, game theory, natural selection
Operating procedures Robert’s Rules, bylaws, checklists
Games & sports Go, football, 8 queens, juggling, Lego
Norms & mores class systems, social cliques, taboos
Legal codes constitutions, contracts, tax law
Religious systems monastic orders, vows, rites & rituals
Kinship genealogies, clans/moieties, family trees
Mundane chores knotting ties, making beds, mowing lawns
Intuitive theories physics, biology, theory of mind
Domain theories cooking, lockpicking, architecture
Art music, dance, origami, color spaces

(a) (b)

(c)

(d) (e)

(f) (g)

Table 1.1 & Figure 1-2: Table: A sampling of domains requiring algorithmic knowledge
formalizable as programs, with motivating examples. Figure: Several classes of programs
expressed as symbolic images: (a) blueprints; (b) assembly instructions; (c) musical notation;
(d) knotting diagrams (e) juggling patterns; (f) graphical proofs; and (g) football plays.

1.2 Knowledge as code

To explain how the LOT changes requires describing how the LOT is represented, how learn-

ing proposes changes to the LOT, and on what basis proposals are accepted or rejected. A

critical mass of work throughout cognitive science has converged on the hypothesis that hu-

man learning operates over structured, probabilistic, program-like representations (Chater &

Oaksford, 2013; Zylberberg et al., 2011; Calvo & Symons, 2014; Lake et al., 2017; Goodman

et al., 2015; Piantadosi & Jacobs, 2016; Goodman, Tenenbaum, Feldman, et al., 2008; De-

peweg et al., 2018; Rothe et al., 2017; Erdogan et al., 2015; Yildirim & Jacobs, 2015; Amalric

et al., 2017; Romano et al., 2018; Wang et al., 2019; cf. Lupyan & Bergen, 2016). This modern

formulation treats the LOT as something like a computer programming language. Learning

in the LOT consists of forming expressions to encode knowledge—for instance, composing

computational primitives like CAUSE, GO, and UP to form LIFT (Siskind, 1996). This

work argues that a compositional mental language is needed to explain systematicity, pro-

ductivity, and compositionality in thought (Fodor, 1975; Fodor & Pylyshyn, 1988; Calvo &

Symons, 2014); a probabilistic language capable of maintaining distributions over structures

23

is needed to explain variation and gradation in thinking (Goodman & Lassiter, 2015; Good-

man, Mansinghka, et al., 2008; Lake et al., 2017; Goodman et al., 2015); and an expressive

language—capable of essentially any computation—is needed to explain the scope of thought

(Turing, 1936; Baum, 2004). Despite comparative and cross-cultural work seeking semantic

primitives for mental languages (Wierzbicka, 1996), other work suggests that learners add

and remove primitives, effectively building entirely new languages (Barner & Baron, 2016;

Carey, 2009, 1985; Gopnik, 1983).

There are good reasons beyond empirical success to model mental representations as

programs and the LOT as a programming language. Humans possess broad algorithmic

knowledge, manipulating complex data in structured ways across many domains (Table 1.1).

Symbolic programs—i.e. computer code—form a universal formal representation for algo-

rithmic knowledge (Turing, 1936; Baum, 2004), and so may be the best model of mental

representations currently available. While there have been many other proposals for model-

ing conceptual representations, only programs arguably capture the full breadth and depth

of people’s algorithmic abilities (Goodman et al., 2015). The rapid rise of programs as tools

for manipulating information—from obviously symbolic domains like mathematics and logic

to seemingly non-symbolic domains like video, audio, and neural processing—further identi-

fies programs as a capable knowledge representation (e.g. Andreessen, 2011). Programs can

also be communicated in many forms, including not only formal programming languages but

a wide variety of forms familiar in all cultures, including natural language (e.g. If you want

to X, first you need to Y, then try to Z, but if that fails. . . ; Lupyan & Bergen, 2016) and

symbolic images (Figure 1-1).

Code can model both procedural (Section 2.2) and declarative information (Section 2.3)

and allow them to interact seamlessly (Figures 2-3 and 2-4). It operates at multiple levels,

including: individual symbols, expressions, statements, data structures & functions, libraries,

and even entire programming languages. Each level can interact with the others: libraries

can embed one language inside another, statements can define data structures, and higher-

order functions can take functions as arguments and return functions as outputs. This leads

to one of the fundamental insights that makes code so successful. By writing computations

as code, they become data that can be formally manipulated and analyzed (Abelson et al.,

24

1996). Programming languages thus become programs which take code as input and return

code as output. Because all programming languages are programs, any knowledge that can

be expressed in any program can be integrated into a single formal knowledge representation.

Programs are expressed according to a formal syntax, and their semantics specify com-

putations by means of the relationships between programs according to some well-defined

model, for example a Turing machine, the x86 processor, or the rules of lambda calculus.

The meaning of a program is thus constrained by the set of relationships in which it par-

ticipates, a form of procedural semantics (Johnson-Laird, 1977; Woods, 1981), also known

as conceptual role semantics or inferential role semantics (Field, 1977; Harman, 1975, 1987,

1982; Loar, 1982; Block, 1987, 1997). Procedural semantics claims that programs get their

meaning through their relations to other programs. In a simple arithmetic language, for

example, the meaning of two is based on the fact that the language intepreter defines an

evaluates to relation, =, such that successor(one) = two and predecessor(three) = two,

prime(two) = true, even(two) = true, and so on. These and other relationships con-

strain the meaning of two and distinguish it from three or predecessor, which participate

in different relationships under =. Procedural semantics is often criticized as falling prey to

the specter of conceptual holism (Fodor & Lepore, 1992), the idea that if expressions are

defined in terms of their relations with other expressions, then any small change could have

dire ramifications throughout the entire system. Programming languages, however, have in-

troduced techniques for encapsulating information—modularized code, objects, namespaces,

and explicit dependency structures, among others (Harper, 2016)—which allow code written

by thousands, even millions, of individuals to interact as a unified language.

1.3 Learning as programming

If knowledge is code, learning is then program induction: discovering programs that explain

how observed data were generated (Kitzelmann, 2009; Flener & Schmid, 2008; Gulwani et

al., 2017). The theory thus draws on inductive programming literature stretching back to

the birth of cognitive science (Newell et al., 1958; Newell et al., 1959), and includes sub-

sequent developments in recursive program synthesis (Smith, 1984), structure & heuristic

25

discovery (Lenat, 1976; Lenat, 1983), meta-programming (Sussman, 1973; Schmidhuber,

1987), genetic programming (Holland, 1975; Koza, 1989) and inductive logic programming

(Shapiro, 1983; Muggleton & De Raedt, 1994). The approach also makes use of insights

from other formalizations of learning, e.g. deep learning (LeCun et al., 2015), connectionism

(Rumelhart et al., 1987), reinforcement learning (Sutton & Barto, 2018), probabilistic graph-

ical models (Koller & Friedman, 2009), and production systems (Lovett & Anderson, 2005).

These can be viewed as exploring specific subclasses of programs or possible implementation

theories. The learning as programming approach, however, is importantly different in pro-

viding learners the full expressive power of symbolic programs both theoretically (i.e. Turing

completeness) and practically (i.e. freedom to adopt any formal syntax).

This approach applies broadly to developmental phenomena—including counting (Pianta-

dosi et al., 2012), concept learning (Goodman, Tenenbaum, Feldman, et al., 2008; Piantadosi

et al., 2016), function words (Piantadosi, 2011), kinship (Mollica & Piantadosi, 2019), theory

learning (Kemp et al., 2010; Ullman et al., 2012), verb learning (Siskind, 1996; Abend et al.,

2017; Gauthier et al., 2019), question answering (Rothe et al., 2017), semantics & prag-

matics (Goodman & Lassiter, 2015; Goodman & Frank, 2016; Frank & Goodman, 2012),

recursive reasoning (Lake & Piantadosi, 2020), sequence manipulation (Rule et al., 2018),

sequence prediction (Amalric et al., 2017; Cheyette & Piantadosi, 2017), structure learning

(Kemp & Tenenbaum, 2008; Stuhlmuller et al., 2010), action concepts (Lake et al., 2015),

perceptual understanding (Depeweg et al., 2018; Overlan et al., 2017), causality (Goodman

et al., 2011), and physical inference (Ullman et al., 2018). These applications build on a

tradition of studying agents who understand the world by inferring computational processes

that could have generated observed data, which is optimal in a certain sense (Solomonoff,

1964a; Hutter, 2005), and aligns with rational constructivist models of development (Xu,

2019; Gopnik & Wellman, 2012; Xu & Griffiths, 2011; Gopnik & Tenenbaum, 2007).

While these ideas appear to be on increasingly solid empirical and theoretical ground,

much work remains to formalize them into robust and precise descriptions of children’s

learning. Most recent LOT work has argued that learners seek short (simple) programs

explaining observed data, a version of Occam’s Razor. A bias for simplicity favors general-

ization over memorization, while a bias for fit favors representations that match the world.

26

Mathematically, these two can be balanced in a principled way using Bayes’ theorem or

minimum description length formalisms to favor simple, explanatory programs (Goodman,

Tenenbaum, Feldman, et al., 2008; Feldman, 2000), a principled approach (Kolmogorov,

1963; Solomonoff, 1964a; Jefferys & Berger, 1992; Chater & Vitányi, 2003; Baum, 2004;

Grünwald, 2007; Grünwald & Vitányi, 2008) that fits human data well (Tenenbaum, 1999,

2000; Feldman, 2000; Goodman, Tenenbaum, Feldman, et al., 2008; Piantadosi et al., 2016).

Bayesian LOT models have often hypothesized that learners stochastically propose candi-

dates by sampling from a posterior distribution over programs, a process that empirically

resembles children’s apparently piecemeal, stop-start development (Ullman et al., 2012).

Modeling knowledge as code and learning as programming has worked well for many

individual domains. We need, however, a general formalization of mental representations

and how they develop. The child as hacker suggests such an account, emphasizing how

information can be encoded, assessed, and manipulated as code regardless of domain, with

the intention of developing formal tools applicable to broad classes of human learning phe-

nomena. Chapter 2 discusses the child as hacker in detail and illustrates how it might be

applied to explain several well-known case studies in developmental psychology.

27

28

Chapter 2

The child as hacker

This chapter introduces the child as hacker as a hypothesis about the representations, pro-

cesses, and objectives of distinctively human-like learning. Like the child as scientist view

(Piaget, 1955; Carey, 1985, 2009; Gopnik, 2012; Schulz, 2012b), the child as hacker is both

a fertile metaphor and a source of concrete hypotheses about cognitive development. It also

suggests a roadmap to what could be a unifying formal account of major phenomena in

development. We extend the idea of learning as programming discussed in Chapter 1 by

drawing inspiration from hacking, an internally-driven approach to programming emphasiz-

ing the diverse goals and means humans use to make code better. Our core claim is that

the specific representations, motivations, values, and techniques of hacking form a rich set

of largely untested hypotheses about learning.

2.1 From programming to hacking

Though the idea of learning as programming has been important in formalizing LOT-based

learning, views based entirely on simplicity, fit, and stochastic search are likely to be incom-

plete. Most real-world problems requiring program-like solutions are complex enough that

there is no single metric of utility nor unified process of development (Figure 2-1). Even

so, modern computational approaches to learning—whether standard learning algorithms or

more recent LOT models—use far fewer techniques and values than human programmers. For

any task of significance, software engineering means iteratively accumulating many changes

29

Figure 2-1: Overview of the child as hacker hypothesis. Code can be changed using many
techniques (x-axis) and assessed according to many values (y-axis). Standard learning mod-
els in machine learning and psychology (green region) tend to focus solely on tuning the
parameters of statistical models to improve accuracy. Recent LOT models (red region) ex-
pand this scope, writing functions in program-like representations and evaluating them for
conciseness and sometimes efficiency. Yet, the set of values and techniques used by actual
hackers (and by hypothesis, children; blue region) remains much larger.

to code using many techniques across many scales (Figure 2-2).

In what follows, we enrich learning as programming with a distinctly human style of

programming called hacking. Today, the term hacking has many connotations: nefarious,

kludgy, positive, ethical, and cultural. Rather than directly importing these modern con-

notations, we draw on earlier ideas about hacking from the origins of modern computing

culture (Levy, 1984). Hacking, as used here, is about exploring the limits of a complex sys-

tem, starting with whatever is at hand and iteratively pushing the system far beyond what

initially seemed possible. We thus begin with a notion of hacking as making code better.

But the essence of hacking goes deeper. It lies in all the values that count as “better,” all

the techniques people use to improve code, and a profound sense of internal motivation.

30

Accurate demonstrates mastery of the problem; inaccurate solutions hardly count as solutions at all
Concise reduces the chance of implementation errors and the cost to discover and store a solution
Easy optimizes the effort of producing a solution, enabling the hacker to solve more problems
Fast produces results quickly, allowing more problems to be solved per unit time
Efficient respects limits in time, computation, storage space, and programmer energy
Modular decomposes a system at its semantic joints; parts can be optimized and reused independently
General solves many problems with one solution, eliminating the cost of storing distinct solutions
Portable avoids idiosyncrasies of the machine on which it was implemented and can be easily shared
Robust degrades gracefully, recovers from errors, and accepts many input formats
Novel solves a problem unlike previously solved problems, introducing new abilities to the codebase
Useful solves a problem of high utility
Fun optimizes for the pleasure of producing a solution
Clever solves a problem in an unexpected way
Minimal reduces available resources to better understand some limit of the problem space
Elegant emphasizes symmetry and minimalism common among mature solutions
Clear reveals code’s core structure to suggest further improvements; is easier to learn and explain

Table 2.1: Learners and hackers share similar values. Hackers want to make their code better,
and listed here are some features of good code. They are also features of useful conceptual
systems.

2.1.1 The many values of hacking

There are many dimensions along which a hacker might seek to improve her code, making it

not only more accurate, but perhaps faster, clearer, more modular, more memory-efficient,

more reusable, cleverer, and so on (Table 2.1). The simplest program is unlikely to be the

most general; the fastest is usually not the easiest to write; the most elegant typically is

not the most easily extensible. Importantly, real world systems do not focus exclusively on

the metrics that have come to the forefront of current LOT-learning paradigms. In addition

to accuracy and simplicity, hackers are also concerned with values related to resource use,

intrinsic reward, aesthetic concerns, and a host of values specific to constructing complex rep-

resentation. As a result, they often maintain multiple solutions to the same problem, tuned

for different sets of values that would otherwise be in tension with one another. Moreover,

effective systems in the real world care more about managing complexity than about being

short, simple, or terse—though these are sometimes useful tools for managing complexity.

Indeed, many foundational ideas in computer science are less about computation per se and

31

more about managing the inevitable complexity that arises when putting computation to

use (Abelson et al., 1996; Fowler, 2018).

2.1.2 The many activities of hacking

To pursue these diverse objectives, hackers have developed many process-level mechanisms

for improving their representations (Fowler, 2018), including adding new functions and data

structures, debugging faulty code, refactoring code, and even inventing new languages (Table

2.2). Hackers understand dozens, even hundreds, of these mechanisms and their potential

impacts on various values. Some make small, systematic, and predictable changes, while oth-

ers are dramatic and transformative; most are specially tailored to specific kinds of problems.

For instance, a hacker might care about speed and so cache the output of subcomputations

in an algorithm. She might seek modularity and so define data structures that encapsu-

late information and make it accessible only through specific interfaces. Or, she might seek

reusable parts and so abstract common computations into named functions. This diversity of

techniques makes hacking different from both common learning algorithms and recent LOT

models. Typically, these other models explore a small set of techniques for improving pro-

grams, based on relatively simple (even dumb) local methods like gradient descent, random

sampling, or exhaustive enumeration.

2.1.3 The intrinsic motivation of hacking

Hacking is intrinsically motivated. Though a hacker may often be motivated in part by an

extrinsic goal, she always generates her own goals—choosing specific dimensions she wants

to improve—and pursues them at least as much for the intrinsic reward of better code as

for any instrumental purpose. Sometimes, her goal is difficult to assess objectively and so

unlikely to arise extrinsically. Other times, her goal can be measured objectively, but she

chooses it regardless of—perhaps in opposition to—external goals (e.g. making code faster,

even though outstanding extrinsic requests explicitly target higher accuracy). Whatever their

origins, her choice of goals often appears spontaneous, even stochastic. Her specific goals and

values may change nearly as often as the code itself—constantly updated in light of recent

32

Tune parameters adjust constants in code to optimize an objective function.
Add functions write new procedures for the codebase, increasing its overall abilities by making new

computations available for reuse.
Extract functions move existing code into its own named procedure to centrally define an already

common computation.
Test & debug execute code to verify that it behaves as expected and fix problems that arise.

Accumulating tests over time increases code’s trustworthiness.
Handle errors recognize and recover from errors rather than failing before completion, thereby

increasing robustness.
Profile observe a program’s resource use as it runs to identify inefficiencies for further

scrutiny.
Refactor restructure code without changing the semantics of the computations performed

(e.g. remove dead code, reorder statements).
Add types add code explicitly describing a program’s semantics, so syntax better reflects se-

mantics and supports automated reasoning about behavior.
Write libraries create a collection of related representations and procedures which serve as a toolkit

for solving a entire family of problems.
Invent languages create new languages tuned to particular domains (e.g. HTML, SQL, LATEX) or

approaches to problem solving (e.g. Prolog, C, Scheme).

Table 2.2: Learners and hackers share similar techniques. Hackers have many techniques
for changing and improving code; some are listed here. The child as hacker suggests that
the techniques of hackers are a rich source of hypotheses for understanding the epistemic
practices of learners.

changes. She is deeply interested in achieving each goal, but she frequently adopts new

goals before reaching her current goal for any number of reasons: getting bored, deciding her

progress is “good enough,” getting stuck, or pursuing other projects. Rather than randomly

walking from goal to goal, however, she learns to maintain a network of goals: abandoning

bad goals, identifying subgoals, narrowing, broadening, and setting goals aside to revisit

later. Even if she eventually achieves her initial goal, the path she follows may not be the

most direct available. Her goals are thus primarily a means to improve her code rather than

ends in themselves.

The fundamental role of intrinsic motivation and active goal management in hacking

suggests deep connections with curiosity and play (Oudeyer, 2018; Gottlieb et al., 2013;

Kidd & Hayden, 2015; Haber et al., 2018), which have also been posited to play central roles

in children’s active learning. We do not speculate on those connections here except to say

that in thinking about intrinsic motivation in hacking, we have been inspired by Chu and

33

Figure 2-2: Hacking accumulates many changes at multiple scales. The figure shows six
snapshots of Linux, after 1, 10, 100, 1,000, 10,000, and 100,000 revisions, including the
hierarchical organization of code into directories (blue dots), and the network organization
of code into interdependent logical modules (red dots).

Schulz’s work exploring the role of goals and problem-solving in play (Chu & Schulz, 2020).

Further understanding of this aspect of both learning and hacking could be informed by our

search for better accounts of play and curiosity.

2.1.4 Putting it all together

All these components of hacking—diverse values, a toolkit of techniques for changing code,

and deep intrinsic motivation—combine to make hacking both a highly successful and emo-

tionally engaging approach to programming. The ability to select appropriate values, goals,

and changes to code transforms seemingly stochastic behavior into reliably better code. The

combination of internal motivation, uncertain outcomes, and iterative improvement makes

hacking a creative and rewarding experience. Consider the following quotes from three ex-

perienced hackers (two come from books about specific programming languages, Forth and

Lisp, but the lessons apply more broadly):

A common sequence is: Read the code, gain some insight, and use refactoring to move that
insight from your head back into the code. The clearer code then makes it easier to under-
stand it, leading to deeper insights and a beneficial positive feedback loop. There are still some
improvements I could make, but I feel I’ve done enough to pass my test of leaving the code
significantly better than how I found it. . . The key to effective [hacking] is recognizing that you
go faster when you take tiny steps, the code is never broken, and you can compose those tiny
steps into substantial changes. (Fowler, 2018)

[Your code] then become[s] the language for describing the data structures and algorithms

34

of components written at a a higher level. . . Now Forth’s methodology becomes clear. Forth
programming consists of extending the root language toward the application, providing new
commands that can be used to describe the problem at hand. . . In fact, you shouldn’t write
any serious application in Forth; as a language it’s simply not powerful enough. What you
should do is write your own language in Forth. . . to model your understanding of the problem,
in which you can elegantly describe its solution. (Brodie, 2004)

In Lisp, you don’t just write your program down toward the language, you also build the
language up toward your program. As you’re writing a program you may think “I wish Lisp
had such-and-such an operator.” So you go and write it. Afterward you realize that using the
new operator would simplify the design of another part of the program, and so on. Language
and program evolve together. Like the border between two warring states, the boundary
between language and program is drawn and redrawn, until eventually it comes to rest along
the mountains and rivers, the natural frontiers of your problem. In the end your program will
look as if the language had been designed for it. And when language and program fit one
another well, you end up with code which is clear, small, and efficient. (Graham, 1993)

This is how hacking develops software. Consider, for example, the growth of the Linux kernel,

the basis for several popular operating systems and a long-running open source project.

Linux started as a personal project aimed at helping then-undergraduate Linus Torvalds

learn about operating systems. It has grown to contain over 750,000 recorded revisions

contributed by over 25,000 hackers (Ellerman, 2020). Its developers have diverse interests

including: efficiency, accuracy, robustness to crashes, security, portability across hardware

platforms, domain-specific utility (e.g. scientific or embedded computing), and modularity.

Development occurs in multiple programming languages and relies on many tools, some

developed specifically for Linux. The consistent and repeated application of hacking values

and techniques transformed this hobby project into a large (> fifteen million lines of code),

capable, and reliable codebase still in active use and development.

Figure 2-2 illustrates the dramatic transformation of Linux over time in two ways. First,

the source code for Linux is stored in files hierarchically organized into directories. Se-

mantically related files are stored together, such that growth in the directory structure (see

“Directories”) represents growth in the kinds of things which Linux knows how to do. For ex-

ample, one directory might contain various ways of representing file systems, another might

contain code for talking to external hardware like monitors and keyboards, etc. Changes to

this taxonomy might add entirely new kinds of things (e.g. networking), or they might divide

old things into multiple categories (e.g. adding a directory for each file system Linux can

use). Second, most of the individual files in the Linux kernel describe modules. The creation

35

of new modules represents the creation of new libraries of code, whether by writing entirely

new code or by reorganizing what had previously been a single library into several related

but meaningfully distinct libraries. While these modules are physically organized using the

hierarchical directory structure, the code in any given module might depend on other code

written in other modules. Changes in this dependency structure (see “Modules”), rather than

representing taxonomic growth, primarily represent changes in the kinds of representations

that are relevant for understanding a given domain. Figure 2-2 thus shows growth both

in the kinds of things which Linux knows how to do and in the interconnectedness of the

representations which support those abilities.

2.2 Hacking early arithmetic

It is helpful to look through the hacker’s lens at a concrete example of algorithmic revision

from cognitive development: how preschoolers and early grade-schoolers learn to solve simple

addition problems like 2 + 3. In this section, we demonstrate how the child as hacker can

be used to explain key findings in arithmetic learning as natural consequences of changing

code-like representations according to hacker-like values and techniques.

We focus on the well-known sum to min transition (Ashcraft, 1982, 1987; Groen &

Resnick, 1977; Kaye et al., 1986; Siegler & Jenkins, 1989; Svenson, 1975), in which children

spontaneously move from counting out each addend separately and then recounting the

entire set (sum strategy) to counting out the smaller addend starting from the larger addend

(min strategy). Small number addition has been modeled many times (Siegler & Shrager,

1984; Siegler & Jenkins, 1989; Shrager & Siegler, 1998; Jones & Van Lehn, 1994; Neches,

1987; Resnick & Neches, 1984), but even as this case is well known, its significance for

understanding learning generally (Siegler, 1996) is not appreciated. This domain is notable

because children learn procedures and, in doing so, display many hallmarks of hackers.

Throughout this transition and beyond, children do not discard previous strategies when

acquiring new ones but instead maintain multiple strategies (Baroody, 1984; Carpenter &

Moser, 1984; Geary & Burlingham-Dubree, 1989; Goldman et al., 1989). The work of Siegler

and colleagues, in particular, explicitly grapples with the complexity of both the many values

36

Resources

Algorithm Pseudocode Trace (2+5) Operations Fingers Memory

def sum(a1,a2):
raise(a1, LeftHand)
raise(a2, RightHand)
y = count(LeftHand, 0)
sum = count(RightHand, y)
return sum

1
1

2 . . .
2

1
3
2
4
3
5
4
6
5 . . .
7 . . .

7!
2(𝑎1 + 𝑎2) + 1 𝑎1 + 𝑎2 1

def shortcutSum(a1, a2):
y = raiseCount(a1, LeftHand, 0)
sum = raiseCount(a2, RightHand, y)
return sum

1 2 34567 . . .

7!
𝑎1 + 𝑎2 + 1 𝑎1 + 𝑎2 2

def countFromFirst(a1, a2):
sum = raiseCount(a2, LeftHand, a1)
return sum

2 34567 . . .

7!
𝑎2 + 1 𝑎2 2

def min(a1, a2):
if a1 > a2:

return countFromFirst(a2, a1)
else
return countFromFirst(a1, a2)

5 6 7 . . .

7!
min(𝑎1, 𝑎2) + 1 min(𝑎1, 𝑎2) 2

def retrieval(a1,a2):
if (a1, a2) not in seen:

seen[(a1, a2)] = add(a1, a2)
return seen[(a1, a2)]

7! 2 0 [0,∞)

Table 2.3: Small number addition algorithms. Each entry lists: code (Algorithm Pseu-
docode); what a child might do and say (Trace); the number of operations (Operations);
how many fingers (or other objects) are needed (Fingers); and how many numbers the child
must remember simultaneously (Memory). raise(N, hand) holds up N fingers on hand by
counting from 1. Y = count(hand, X) counts fingers held up on hand starting from X to
return Y. Y = raiseCount(N, hand, X) combines raise and count, counting from X while
holding up N fingers on hand. Resource counts for retrieval assume a previously seen prob-
lem; the values otherwise grow to accommodate a call to add, a generic adding algorithm
which selects a specific addition algorithm appropriate to the addends. 𝑎1 and 𝑎2 denote the
first and second addend, respectively.

which learners might adopt and the need to select among many strategies for solving the

same problem. They have shown that children appropriately choose different strategies trial-

by-trial based on features like speed, memory demands, and robustness to error (Siegler &

Jenkins, 1989; Siegler, 1996).

Table 2.3 implements several early addition strategies as code. For the sake of space,

we highlight five strategies (cf. Jones & Van Lehn, 1994; Siegler & Shipley, 1995). Children

37

acquire the sum strategy through informal interactions with parents or at the onset of formal

education (Saxe et al., 1987; Siegler & Jenkins, 1989; Baroody & Gannon, 1984) (sum; Table

2.3). sum appears optimized for instruction and learning. It is simple, uses familiar count

routines, requires little rote memorization, and respects children’s limited working memory.

It also computes any sum in the child’s count list, making sum an accurate and concise

strategy for addition. Most recent LOT models would consider the problem well-solved. sum

is slow and repetitive, however, counting every object twice.

Restructuring sum to simultaneously track both counts, updating the sum while creating

each addend, counts each object only once and explicitly represents a strong generalization:

here, that the two counts are not coincidental but used for closely connected purposes. The

result is shortcutSum (Table 2.3): count out each addend, reciting the total count rather

than the current addend count. shortcutSum tracks both counts using a newly implemented

function, raiseCount. Maintaining simultaneous counts increases working memory load

and the potential for error and is, unsurprisingly, a late-developing counting skill (Fuson

et al., 1982; cf. Steffe et al., 1983). Addition strategies incorporating simultaneous counts

naturally appear during early grade-school (Fuson et al., 1982) but can be discovered earlier

given practice (Siegler & Jenkins, 1989).

Many techniques for improving code are sensitive to execution traces recording a pro-

gram’s step-by-step behavior. In shortcutSum, for example, the first call to raiseCount is

redundant: it counts out a1, the first addend, to produce y, meaning y is equal to a1. Re-

moving the first count and replacing y with a1 produces countFromFirst (Table 2.3). It is on

average twice as fast as shortcutSum while reducing finger and working memory demands.

These changes, however, are not based on code alone; they require sensitivity to the behavior

of code via something like an execution trace. While reported in children and common in

theoretical accounts (Neches, 1987; Secada et al., 1983; Resnick & Neches, 1984), there is

debate about how frequently countFromFirst appears in practice (Siegler & Jenkins, 1989;

Shrager & Siegler, 1998).

Changes in a hacker’s basic understanding of a problem provide another source of re-

visions. New understanding often comes from playing with code in the manner of “brico-

lage” (Turkle & Papert, 1992) rather than formal instruction. For example, she might

38

notice that addition is commutative—changing the addend order never affects the final sum.

shortcutSum helps explain why: every raised finger increments the sum exactly once. The

principle of commutativity is formally introduced as early as first grade (National Governors

Association Center for Best Practices, Council of Chief State School Officers, 2010), but can

be independently discovered earlier (Baroody & Gannon, 1984). Commutative strategies

are also common before children understand that addition is commutative, suggesting an

incomplete or incorrect understanding of addition (Baroody & Gannon, 1984; Steffe et al.,

1983).

These discoveries justify swapping addend order when the first addend is smaller than

the second. This gives the well-studied min strategy: count out the smaller addend from

the larger addend (min; Table 2.3). min is perhaps the best attested small number addition

strategy, common from first-grade through adulthood (Groen & Parkman, 1972; Groen &

Resnick, 1977; Ashcraft, 1982, 1987; Kaye et al., 1986; Svenson, 1975) but spontaneously de-

veloped earlier given extensive practice (Siegler & Jenkins, 1989). On average, min removes

half the counting necessary for countFromFirst and further reduces finger and working mem-

ory demand. min, however, requires the ability to rapidly compare numbers—the hacking

approach naturally draws on libraries of interacting, and often simultaneously developing,

cognitive abilities.

Finally, a hacker given certain addition problems multiple times might realize that she

could save time by memorizing and retrieving answers after computing them the first time

(retrieval; Table 2.3), as in dynamic programming algorithms (Cormen et al., 2009). In-

deed, as children age they rely decreasingly on strategies requiring external cues (e.g. fingers,

verbal counting), and increasingly on memorization (Siegler & Jenkins, 1989), a transition

humans formally teach (National Governors Association Center for Best Practices, Council

of Chief State School Officers, 2010) and also discover independently (Saxe, 1988b, 1988a).

Much of we know about the development of small number addition is thus well-aligned

with the child as hacker, which naturally accommodates and unifies many seemingly dis-

parate phenomena. The child as hacker also suggests several next steps for work on addition

and related domains.

First, we need models of learning that formalize knowledge as code modified using hacker-

39

fCounts :: (Set -> Word) -> Bool

def fCounts(f):
usesCountList(f) and touchesAllItems(f)

(a)

count :: (Set -> Word)

def count(set, start="one"):
say(start)
if not isSingleton(set):

count(pop(set), next(start))

(b)

count :: (x: Set) ->
(y: Word | y = name(cardinality(x)))

def count(set, start="one"):
say(start)
if not isSingleton(set):

count(pop(set), next(start))

(c)

Figure 2-3: Three steps toward a mature understanding of counting: (a) a predicate for
identifying counting procedures; (b) a procedure for counting; and (c) a more nuanced type
for counting.

1 data Digit = 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
2 data Number = Simple Digit | Compound Number Digit
3

4 succDigit 0 = 1
5 -- ...
6 succDigit 8 = 9
7

8 succ (Simple 9) = Compound (Simple 1) 0
9 succ (Simple x) = Simple (succDigit x)

10 succ (Compound n 9) = Compound (succ n) 0
11 succ (Compound n d) = Compound n (succDigit d)

12 succ :: (x : int) -> (y : int | greater(y x))
13

14 greatestNumber ::
15 (x : int | not(exists(y greater(y x))))
16

17

18 -- Type Inference Fails:
19 --
20 -- greater(succ(greatestNumber) greatestNumber)
21 --
22 -- greatestNumber and succ are incompatible!

Figure 2-4: Learning about infinity through number grammars and the successor function:
(1–11) data structures and functions for computing base-10 successors; and (12–22) discov-
ering via type inference that the successor function is incompatible with a greatest number.

like values, goals, and techniques. Explicitly situating arithmetic learning within the context

of the child as hacker will likely suggest useful and novel hypotheses (e.g. specific hacking

techniques (Fowler, 2018) might explain specific chains of strategy introduction; differences

in values might explain differences in performance (Siegler & Jenkins, 1989)).

Second, mathematical learning extends far beyond small number addition, including both

early sensitivities to number and the development of counting, and the later development of

compositional grammars for large numbers, a concept of infinity, more complex arithmetic,

and so on. Many of these require deep interactions between procedural and declarative

knowledge. The child as hacker suggests ways to integrate these phenomena into a general

account of mathematical development.

For example, developing a procedural mastery of the simpler skill of counting and a

conceptual grasp on its declarative meaning is an iterative and protracted process that

unfolds over many years. After carving out an initial semantic field (Wagner et al., 2016;

40

Bloom & Wynn, 1997; Wynn, 1992b), 18-month-olds recognize features of correct counting

by others (e.g. uses number words, touches all items) before counting themselves (Slaughter

et al., 2011). Hackers develop similar sensitivities by writing specification predicates for

behavior they want to replicate. Figure 2-3a shows such a predicate which takes as input

a function f from Sets to count Words and returns a Bool indicating whether the function

meets the specification of using the count list and touching all the items in the set1. Children

then acquire their own count list (Briars & Siegler, 1984; Fuson et al., 1982; Fuson, 1988)

and build on core sensitivities to small set cardinalities (Wynn, 1992a) to learn a series of

partial, subset counting algorithms before acquiring a general counting procedure (Wynn,

1990a, 1992b; Carey, 2009; Piantadosi et al., 2012). Children at this stage count correctly

but typically fail to connect counting with cardinality (Davidson et al., 2012; Barner, 2017;

Jara-Ettinger et al., 2017). Hackers often write working functions for which they have only

a rudimentary type signature. Types provide semantic summaries of code, allowing for

fast and automated reasoning about certain properties of a program. More complex type

systems support richer inferences. Figure 2-3b shows count, which counts by removing items

from the set while pronouncing count words (Piantadosi et al., 2012). The type, however,

describes count merely as a function from Sets to count Words—many incorrect functions

also fit this description. The semantics of counting mature over the following months and

years (Davidson et al., 2012; Barner, 2017; Jara-Ettinger et al., 2017), and hackers similarly

revise types repeatedly to encode more detailed information. In Figure 2-3c, the definition

of count is unchanged, but the type now encodes that the count Word signifies the Set’s

cardinality. This marks a more complete understanding of counting as establishing and

naming set cardinalities.

From there, learning a base system, number grammar, and procedures for manipulating

large numbers (Fuson, 1992; Fuson, 1988), eventually leads to the successor principle (every

number has a successor) and the concept of infinity (there is no largest number) (Cheung

et al., 2017; Hartnett & Gelman, 1998; Hartnett, 1991; Yang, 2016). Again, this requires

significant interplay between declarative knowledge and procedural knowledge. A hacker

1This is not a complete specification of counting but is certainly a plausible early specification for children
just beginning to recognize counting behavior.

41

might similarly: develop numerical data structures, write a successor function to manipulate

them, infer a type for successor showing that the output is greater than the input, and

prove that successor is incompatible with a greatest number. In Figure 2-4, lines 1–2, Digit

and Number describe possible values that a digit or number can take, respectively. Lines

4–11 implement successor for these data structures. In line 12, the type of succ encodes

the successor principle as a function from an integer x to an integer y where y is greater

than x. Similarly, lines 14–15 describe greatestNumber as an integer x where no integer is

greater than x. Lines 18-22 are the output of a failed type inference algorithm, saying that

these types are incompatible because succ greatestNumber is greater than greatestNumber.

Either there is no greatest number or the type of succ is incorrect. The same kinds of thinking

could also be applied to other mathematical concepts like: shapes, patterns, multiplication,

subtraction, integers, division, rational numbers, decimals, real numbers, algebra, geometry,

logic, and even calculus and higher mathematics.

Third and finally, the child as hacker should also provide paths to algorithmic theories for

qualitatively different kinds of knowledge acquisition—e.g. intuitive theories of the physical

and social world—as described next.

2.3 Hacking intuitive theories

While the small number addition example examines procedural learning in mathematics,

the child as hacker equally applies to other domains and kinds of knowledge. This section

briefly considers two: kinship systems (Figure 2-5a) can be seen as logical and declarative

theories of social relatedness, and Mendelian inheritance (Figure 2-6a) as a probabilistic and

causal theory of biological relatedness. As with early arithmetic, the key point is not that

these exact processes are the ones actually occurring in children’s minds during develop-

ment. It is instead that the tools and techniques of hacking provide a rich language for

describing what might be happening and offer a rich source of formal hypotheses for further

investigation.

A hacker might implement both kinship and Mendelian inheritance by compressing a

set of observations into more reusable, generalizable, and modular code. In both cases,

42

(a)

lives(jim, chicago).
mother(jenny, ben).
eye_color(dan, blue).
father(jim, hacker).
uncle(dan, ben).
fashionable(may).
aunt(may, hacker).
% ...

(b)

father(X, Y) :- parent(X, Y), male(X).
mother(X, Y) :- parent(Y, Y), female(X).
husband(X, Y) :- male(X), spouse(X, Y).
sister(X, Y) :-

parent(P, X), parent(P, Y),
female(X).

% ...

(c)

parent(jim, hacker).
parent(jenny, ben).
female(hacker).
male(ben).
male(jim).
female(jenny).
lives(jim, chicago).
% ...

(d)

Figure 2-5: Mapping kinship to code: (a) a family tree labeled by three kinship systems
(circle = female, colors are different terms, child generation ignores gender); (b–d) kinship
in Prolog: (b) initial kinship data; (c) rules for inferring kinship relations, including new
primitives parent, spouse, male, and female; and (d) a small set of rules such that (c) &
(d) implies all of (b).

she iteratively improves her program—adding, deleting, and revising code—and occasionally

adds entirely new structures simply by defining and using them. Some changes help, others

are rejected, and she eventually produces compact theories of both domains.

In learning kinship, she can frame the task as refactoring a long list of relations about

individuals (Figure 2-5b) into rules for high-level kinship terms (Figure 2-5c) and a small set

of basic facts (Figure 2-5d) from which all relations can be easily derived. As she develops

her theory, she ultimately decides to implement it in a logic programming language called

Prolog. Prolog expresses computations as Horn clauses called rules, Head :- Body.. Head

is true if each term in Body is true. Empty bodies are considered true. This logical rep-

resentation cleanly matches the logical structure of kinship that she is discovering. Along

the way, our hacker hypothesizes four latent relationships—parent(X, Y), spouse(X, Y),

male(X), and female(X). While these do not appear in the original data, adding them to

the system ends up dramatically simplifying her explanations. The process of adding them is

straightforward. She simply names each symbol and begins using it. Each takes on meaning

as she defines the facts and rules in which it participates. She discovers that the terms she

is most interested in—brother(X, Y), sister(X, Y), mother(X, Y), etc.—all depend on

these new latent predicates, rather than on others like lives(X, Y) or eye_color(X, Y).

Given this theory, the Prolog interpreter then allows her to draw inferences using deductive

proof to learn, e.g. who her uncles are.

In learning Mendelian inheritance, she can frame the task as refactoring a long list of

43

phenotypes and parentage records (Figure 2-6b) into a causal theory of biological inheritance

relating phenotypes to genotypes via the three laws of inheritance (Figure 2-6c). Because pat-

terns of inheritance are not strictly logical but require distributional reasoning, and because

she is looking for a causal explanation, our hacker implements her theory as a generative

model in a probabilistic programming language called Church (Goodman, Mansinghka, et

al., 2008). Church expresses computations as parenthesis-delimited trees that change ac-

cording to certain built-in rules. These rules can be modified by using def to define specific

changes for a given leaf or subtree. For example, Figure 2-6b says that the leaf data should

be replaced by the subtree ((a1 NA NA (YW WR)) (a2 NA.... This generative model speci-

fies a uniform prior distribution over unknown parents (i.e. each gene in their genotype is

drawn randomly), and a causal process by which parents breed to produce children based

on the laws of segregation and separation. Together, these can be used to sample the

possible genotype for a given individual, from which it is then possible to derive their visible

phenotype given the law of dominance and a list of traits. To invert this generative process

to perform inference, she queries her theory using Church’s built-in tools for sampling-based

inference to learn, e.g. likely genotypes for a1 and a2 given the observed phenotypes of all

the individuals listed in data.

2.4 Hacking and other metaphors

The child as hacker builds on several other key developmental metaphors. All these views

are valuable and have significantly improved our understanding of learning. Here, we explain

how the child as hacker extends these accounts, highlighting its potential contributions. See

Table 2.4 for a summary of the major claims of each view.

2.4.1 The child as scientist

The child as scientist metaphor is one of the strongest influences on the child as hacker.

With roots in the work of Piaget (Piaget, 1955) and since extensively developed (Carey,

1985; Gopnik, 1996; Carey, 2009; Schulz, 2012b; Gopnik, 2012), this view emphasizes how

children structure their foundational knowledge in terms of intuitive theories analogous in

44

(a)

(def data
'((a1 NA NA (YW WR))

(a2 NA NA (GN SM))
(b1 a1 a2 (YW SM))
(b2 a1 a2 (YW SM))
(c1 b1 b2 (YW WR))
(c2 b1 b2 (GN SM))
(c3 b1 b2 (YW SM))
(c4 b1 b2 (GN WR))
(c5 b1 b2 (YW SM))
;; ...

))

(b)

(def traits (list (pair YW GN) (pair SM WR)))
(def (prior) (repeat (len traits) random-gene))
(def (breed genotype1 genotype2)
(map pair (segregation genotype1) (segregation genotype2)))
(def (genotype id) (if (eq? id 'NA)

(prior)
(breed (genotype (parent1 id)) (genotype (parent2 id))))

(def (phenotype genotype) (map dominance genotype traits))
(def (segregation parent) (map separation parent))
(def (separation gene) (uniform-draw gene))
(def (dominance gene trait)

(if (dominant? gene) (dominant trait) (recessive trait)))

(c)

Figure 2-6: Mapping Mendelian inheritance to code: (a) an overview of Mendelian inheri-
tance; (b–c) Mendelian inheritance in Church. (b) a list of individuals (a1, a2, b1,. . .), their
parents, and phenotypes (YW = Yellow; GN = Green; SM = Smooth; WR = Wrinkly); (c) a list
of traits (dominant followed by recessive) and part of a generative theory using Mendel’s
laws and a uniform prior over unknown parents (i.e. random-gene draws a pair of alleles
uniformly at random).

important ways to scientific theories (Murphy & Medin, 1985; Gopnik & Meltzoff, 1997;

Wellman & Gelman, 1992, 1998), and build knowledge via epistemic values and practices

(Schulz, 2012b; Gopnik et al., 2004; Gopnik & Tenenbaum, 2007; Gopnik & Wellman, 2012;

Xu & Griffiths, 2011) similar to the ways scientists collect and analyze evidence and mod-

ify theories in response to evidence, constructing theories which are accurate, general, and

simple. The related view of rational constructivism (Xu, 2019) emphasizes the sophisti-

cated mechanisms children use in theory-building—Bayesian statistical inference, construc-

tive thinking processes such as analogy, mental simulation, and other forms of “learning by

thinking” (Lombrozo, 2019), and active, curiosity driven exploration—and the importance

of formalizing these mechanisms in rational computational models.

The child as scientist and the child as hacker are best seen not as competitors but as

natural companions, with overlapping but complementary notions of knowledge represen-

tation, epistemic values and practices, and constraints on learning, which together paint a

more complete picture of cognitive development. The child as scientist emphasizes children’s

learning as centrally focused on building causal models of the world and the conceptual sys-

45

Metaphor Knowledge Objectives Mechanisms

Scientist Theories: causal models and
conceptual systems of vary-
ing abstraction

Accuracy, generality, sim-
plicity of models

Inductive inference, exper-
imentation, analogy, boot-
strapping

Workshop/
Evolution

Cognitive tools: rules,
strategies, networks, hy-
potheses, schemas

Expected utility (reward),
intrinsic motivation

Darwinian variation and se-
lection with goal-sketch con-
straints

Hacker Programs: functions, data
structures, type systems, li-
braries, languages (Section
1.2)

The above plus many other
dimensions of value in good
code (Table 2.1)

The above plus many other
methods for revising & im-
proving code (Table 2.2)

Table 2.4: A comparison of three families of developmental metaphors discussed in this
chapter—the child as scientist, the workshop and evolutionary metaphors, and the child
as hacker—along three dimensions: the kinds of knowledge learners acquire, the primary
objectives of learning, and the mechanisms used in learning.

tems (intuitive theories) supporting these models. It asks questions about how theories are

represented, what makes for good theories, and what mechanisms support theory learning,

drawing inspiration from how scientists have approached these questions and implementing

its proposals computationally as approximations to Bayesian inference over spaces of causal

networks, probabilistic first-order logic, and probabilistic programs (Gopnik et al., 2004;

Gopnik & Tenenbaum, 2007; Gopnik & Wellman, 2012; Goodman et al., 2015; Ullman et

al., 2012; Goodman et al., 2011; Kemp & Tenenbaum, 2008; Kemp et al., 2010).

The child as hacker extends these ideas with its broader view of what kinds of repre-

sentations are worth learning, what values set goals for learning, and what practices are

useful for accomplishing these goals: programs may go beyond the purely causal, there are

many values for good programs beyond those traditionally used to assess scientific theories

(accuracy, generality, simplicity), and learning draws on many algorithmic-level processes

across multiple timescales, not just the stochastic sampling or search mechanisms that have

traditionally been used in Bayesian models of theory learning. This view could enrich both

the computational and algorithmic-level claims of child as scientist models in many specific

ways. For example, intuitive theories could benefit from being formalized as domain-specific

libraries or languages for writing generative probabilistic programs (e.g. Section 2.3), and

the construction of more radically new kinds of concepts could be captured as the construc-

46

tion of new function and data types, not just new functions or data structures of existing

types. The many values of good code in Table 1 could also have analogs in the goals that

guide children in constructing their intuitive theories, and the processes of improving code

in Table 2 could all have analogs in how children build their intuitive theories; perhaps these

could help formalize some of the mechanisms of analogy, bootstrapping, explanation-driven

and goal-driven search proposed in the child-as-scientist and rational constructivism views

(Carey, 2009; Schulz, 2012b; Lombrozo, 2019; Xu, 2019) which have not been fully captured

by previous algorithmic-level learning models.

It is perhaps fitting that scientists recognize highly familiar scientific practices and val-

ues in development, but in addition to an evocative metaphor, the child as scientist is a

fruitful hypothesis. It has sparked numerous Child-As-X theories in cognitive psychology

positing specific modes of scientific thinking as key throughout development. Children can

be seen as: linguists determining the structure of language (Gleitman et al., 1977; Karmiloff-

Smith, 1992; Labov, 1989); anthropologists systematically studying behavior (Harris, 2012);

statisticians inferring latent world structure (Gigerenzer & Murray, 1987; Peterson & Beach,

1967); econometricians discovering preferences (Lucas et al., 2014); and philosophers refin-

ing understanding through reflection and analysis (Kohlberg, 1968; Selman, 1981). We hope

the child-as-hacker view will further grow this productive tradition. Efforts to formalize the

child-as-scientist metaphor have also played key roles in its fruitfulness (Gopnik et al., 2004;

Gopnik & Schulz, 2004; Gopnik & Tenenbaum, 2007; Gopnik & Wellman, 2012; Xu & Grif-

fiths, 2011). Indeed, many of the LOT models discussed earlier were explicitly developed to

formalize aspects of theory learning and the broader scientific process. Formalizing the child

as hacker may seem like a daunting challenge, but this process took decades of sustained

interdisciplinary effort for the child as scientist. A long-term investment in computational

models for the child as hacker could prove similarly fruitful.

2.4.2 Resource rationality & novelty search

The idea of resource rationality (Lieder & Griffiths, 2020; Griffiths et al., 2015; Lewis et

al., 2014) argues that theories must account for cognition as realized in finite computational

devices. Time, memory, and energy are limited. Learners can thus more quickly find practical

47

hypotheses by evaluating resource use alongside simplicity and fit. Stanley and colleagues

have developed the idea of novelty search (Lehman & Stanley, 2011b, 2011a) around the

observation that many learning problems require navigating large hypothesis spaces in finite

time. Comparing trivially different hypotheses is unlikely to be helpful. They demonstrate

for many classes of problems that agents sensitive to novelty learn more effectively than

agents using other objectives.

Both resource rationality and novelty search are important ways of thinking about ob-

jectives in learning. The child as hacker embraces these insights, but makes claims about

learners’ objectives beyond either view. First, it encourages considering both efficiency and

novelty, rather than arguing for either alone. Second, it argues for a radically larger set of

possible influences on the objective function, including engineering and aesthetic concerns

and perhaps more (Table 2.1). Third, it suggests that learners’ objectives constantly change

in complex and as-yet poorly understood ways, identifying a key area for future research.

Rather than searching for the right human-like objective function, the child as hacker sug-

gests that cognitive scientists seek to understand an entire space of possible objectives and

the ways that learners move between them.

2.4.3 Workshop and evolutionary metaphors

The child as hacker is also closely related to a pair of metaphors from Siegler and colleagues

emphasizing the dynamics of learning: the workshop metaphor (Siegler & Jenkins, 1989)

and the evolutionary metaphor (Siegler, 1996). The workshop metaphor emphasizes the

diversity of knowledge (raw materials) and learning processes (tools) available to children

when producing mental representations (products) to meet the demands of daily life (work

orders), and the importance of selecting appropriate materials and tools for a given product.

The evolutionary metaphor recasts these ideas in light of biological evolution, highlighting

the essential role of variability, selection, and adaptation in learning. These metaphors

work together to tell a broader story about learning. Both argue that we maintain multiple

strategies for solving any given problem and adaptively choose among them, learning about

their context-specific usefulness over time. In contrast to “staircase” theories suggesting long

periods of relatively uniform thinking punctuated by brief and dramatic transitions, they

48

suggest that children navigate “overlapping waves” as new strategies appear and others fade.

The child as hacker shares much with these metaphors. They all emphasize the impor-

tance of bringing a diverse collection of mental representations to bear during learning, as

well as selecting representations, values, and learning strategies most relevant to the specific

task at hand. Each view also highlights the way knowledge is iteratively revised; the out-

comes of learning are themselves frequently the raw inputs for future learning. Each makes

variability, selection, and adaptation central features of learning.

The mind, however, operates on representations which bear a closer resemblance to soft-

ware than hardware, looking more like programs than tables or chairs. We could think of

the child as hacker as updating the workshop metaphor for the software era and focusing on

the tools needed to build a rich computational model of a richly computational mind: all

the ways we have come to represent knowledge with programs and programming constructs,

and all the values and activities of hacking for making programs better, which seem more

directly tied to the goals and mechanisms of learning and more amenable to computational

formalization than those of carpentry or metalwork.

The child as hacker may also be better aligned with children’s goal-orientedness during

learning. Evolution is an intentionless process whose primary change mechanisms act at

random. In the workshop and evolutionary metaphors, goal schemas can constrain this ran-

dom search process (Shrager & Siegler, 1998) but that is different from directly and deeply

guiding it. As with other forms of stochastic search or reinforcement learning, learning un-

der an evolutionary mechanism would thus require tremendous amounts of computation and

time (Baum, 2004). Children’s learning, by contrast, is remarkably efficient (Tenenbaum

et al., 2011), in part because it is strongly goal-directed (Schulz, 2012b). Children’s be-

havior may sometimes look random, but there is almost always an underlying goal driving

that behavior. Where the apparent randomness comes from, the evolutionary character,

is perhaps a dynamically changing set of goals: initially 𝑋, then 𝑌 , then 𝑍, then back

to 𝑋 until it is achieved, and so on. This dynamic is more consistent with the intrinsic

nature of goals in hacking, where children’s goals might then address different values such

that each improves representations in different ways. Externally, without access to those

goals or their internal logic, both learning and hacking may look random, piecemeal, and

49

non-monotonic—sometimes progressing, sometimes regressing. Internally, however, each is

intensely goal-driven, resulting in profound, long-term growth.

In sum, the child as hacker helps to refine and advance the workshop and evolutionary

views, by giving a less metaphorical take on the workshop metaphor and a better fit for the

goal-driven behavior of children than the intentionless randomness of evolution. Moreover,

the child as hacker makes specific suggestions beyond either metaphor, including a strong

emphasis on program-like representations and the specific values and processes that guide

how programs get better (Tables 2.1 and 2.2), which we hope can serve as the basis for a

new generation of modeling in cognitive development.

2.5 Prospects for a computational account of learning

Hacking represents a collection of epistemic values and practices adapted to organizing knowl-

edge using programs, and there is growing evidence that programs are a good model of mental

representations. The child as hacker combines these ideas into a roadmap toward a com-

putational account of learning and cognitive development. It makes testable claims about

a general class of inductive biases humans ought to have—namely those related to synthe-

sizing, executing, and analyzing information as programs. It also concretely identifies the

representations, objectives, and processes supporting learning with those of human hackers.

Finally, it makes a unifying claim about how these three might be implemented as code,

procedures for assessing code, and procedures for revising code, respectively.

To explain learning in light of these claims, we must systematically use code as a lens on

learning. Doing so produces testable hypotheses that differ from common alternatives. For

instance, the child as hacker predicts that children frequently change beliefs in the absence of

external data. It predicts that children might learn representations which are less accurate

or more complex than alternatives so long as they win on, e.g. modularity or cleverness.

It also predicts that, while dramatic, global changes are possible, learning typically occurs

through many simple, structured changes, similar to the way code tends to be refactored.

Both machine learning and psychology would benefit from a united effort to pursue

this roadmap in developing a computational account of human learning. Machine learning

50

would benefit greatly from the growth of empirical programs in psychology to understand

how children hack their own representations (see Outstanding Questions), how real hack-

ers assess and improve their code in practice, and how children adopt and pursue goals.

Effectively searching large hypothesis spaces is a fundamental problem in machine learn-

ing, so one crucial question for this second program is how humans effectively search the

space of Turing-complete computations. Psychologists and cognitive scientists would benefit

greatly from a sophisticated framework for program induction. Such a framework would

bring together existing knowledge about theoretical computer science, programming lan-

guages, compilers, program synthesis, and software engineering to provide tools capturing

human-like approaches to solving problems in these domains.

The child as hacker offers a path toward addressing central challenges of human learning

and development that both reframes classic questions and helps us ask new questions. Recent

efforts in cognitive science on constructive thinking (Lombrozo, 2019), the neuroscience of

programming (Fedorenko et al., 2019; Ikutani et al., 2020; Ivanova et al., 2020), and modeling

the development of intuitive physics using game engines (Ullman et al., 2017; Smith et al.,

2019) represent promising complementary steps. Recent developments in program synthesis

are also beginning to operationalize aspects of specific hacking techniques, including work

on backward chaining of goals and subgoals (Osera & Zdancewic, 2015; Polikarpova et al.,

2016; Polozov & Gulwani, 2015), neurally-guided synthesis (Balog et al., 2017; Devlin et al.,

2017), iterative refactoring (Dechter et al., 2013; Ellis et al., 2018; Lin et al., 2014; Cropper

et al., 2019), incremental programming (Solar-Lezama, 2008; Nye et al., 2019; Ellis et al.,

2019), learning generative probabilistic models (Hewitt et al., 2020; Ellis et al., 2020), and

learners sensitive to resource use (Knoth et al., 2019; Cropper & Muggleton, 2019). These

efforts have the potential to move the child as hacker beyond just another metaphor, or just

a hypothesis, to a working and testable computational account of cognitive development.

But they are just first steps. We look forward to all the work that remains to be done

to understand how it is that children hack their own mental representations to build yet-

unparalleled tools for thinking. The rest of this thesis takes another step in this direction

by conducting a detailed empirical investigation of concept learning focused on the domain

of list functions. In Chapter 3, we describe this family of concepts in detail.

51

52

Chapter 3

List functions as a domain for

psychological investigation

The remainder of this thesis develops a first attempt to formalize learning as hacking in

a computational model, and explores this model along with several alternative approaches

in one in-depth empirical study of human and machine concept learning. The goal of this

chapter is to introduce the family of concepts that we will be studying for the rest of thesis,

the domain of list functions.

The variability of human concept learning is part of what makes it so intriguing. Some-

times, learning is swift and powerful, recovering abstract, generalizable conceptual systems

after brief interactions with sparse data (Tenenbaum et al., 2011). The answer might ap-

pear immediately, almost without conscious effort. Word meanings, for example, can often

be inferred from just a single informal encounter (Carey & Bartlett, 1978). If not that, it

might be that a learner can tailor problem-solving strategies on a task-by-task basis in so-

phisticated ways, even for novel tasks, reliably reaching correct answers and understanding

why the strategy worked (Siegler, 1996). Other times, even after accounting for immediate

restrictions on energy, time, and computational power (Lieder & Griffiths, 2020; Griffiths

et al., 2015), inductive learning is slow, piecemeal, and labored (e.g. for natural number:

Carey, 2009; Barner, 2017). People have the sensation of struggling for a long time through

a difficult search, trying multiple options and only slowly narrowing in on the solution after

many false starts and frequent backtracking. The problem might even remain stubbornly

53

(a) (b) (c) (d)

abc : abd :: ijk : ?
(e)

(2-4-6�T), (6-4-2�F)� ?
(f)

1112112123. . .?
(g)

(h) (i) (j)

Figure 3-1: Stimuli from key experimental domains for inductive concept learning. (a): a
Bongard problem; (b): the six Boolean concept types studied in Shepard et al. (1961), with
exemplars on the left and non-exemplars on the right; (c): the Boolean reasoning task from
Piantadosi et al. (2016); (d): an artificial world from Ullman et al. (2018). (e): a text-based
analogy, abc is to abd as ijk is to. . .? ; (f): examples from the 2-4-6 task; (g): a numerical
sequence prediction task; (h): characters from Omniglot; (i): stimuli for a concept from the
ARC challenge; (j): a binary sequence prediction task from Cheyette and Piantadosi (2017).

opaque until the solution is explicitly provided—sometimes even after it has been provided.

One difficulty cognitive scientists face in studying concept learning is finding problem

classes which expose this variance to empirical study. Several domains have emerged as key

areas of investigation (Figure 3-1). Bongard problems (Bongard, 1967; Hofstadter, 1979;

Foundalis, 2006) are visual classification tasks. Participants are shown 12 images divided

into two gorups of six. Each group is governed by a rule and, typically, the rules between the

two groups are related. The task is to infer both rules. Boolean and 𝑛-ary function learning

(Bruner et al., 1956; Shepard et al., 1961; Nosofsky, Gluck, et al., 1994; Nosofsky, Palmeri,

et al., 1994; Feldman, 2000; Feldman, 2003; Goodman, Tenenbaum, Feldman, et al., 2008;

Goodwin & Johnson-Laird, 2013; Piantadosi et al., 2016) provide a more constrained sort of

classification problem. They present images varying on multiple Boolean or 𝑛-ary dimensions

such as color, size, shape, or number. Participants are asked to classify images based on some

logical rule. In Shepard et al. (1961), stimuli vary on three Boolean dimensions, providing

54

6 structurally distinct types of propositional concepts. Exemplars and non-exemplars are

assigned different labels, and the task is to learn correct labels for each object. By contrast,

Piantadosi et al. (2016) presented subjects with entire sets of stimuli, and asked them to

classify objects in each set as either exemplars or non-exemplars of a first-order rule.

This sort of set inclusion task has also been explored in rule learning. In Wason’s (1960)

2-4-6 task, participants are given an initial triple in accordance with a rule, e.g. 2-4-6 might

be given for the rule numbers in ascending order, and asked to propose new triples. They

receive feedback after each proposal. When ready, they guess the rule. In Tenenbaum (2000),

subjects are shown random samples from a concept specifying a subset of the numbers

0–100 according to some rule. They are then asked to label every remaining number as

either belonging to or being excluded from the set. Numerical reasoning has also been

studied in function learning tasks (see Schulz et al., 2017, for review). In these tasks,

participants are presented with a real number or continuous magnitude given as input to a

mathematical function; they are asked to predict the function’s output magnitude. Sequence

prediction tasks also investigate numerical and Boolean cognition (Bartlett, 1958; Mahabal,

2010; Amalric et al., 2017; Cheyette & Piantadosi, 2017). Here, subjects are presented with

the beginning of a sequence, typically numerical or Boolean, and asked to continue it.

Analogy-based domains present a different sort of task in which participants view a series

of input/output relations and are asked to infer some rule relating inputs and outputs. Learn-

ing is tested by asking people to predict outputs for novel inputs by applying their candidate

rule. Text-based analogies as studied in Seek-Whence, Jumbo, and CopyCat (Meredith,

1986; Mitchell, 1992; Hofstadter, 1995) define input/output relations over character strings,

while visual analogy domains such as ARC (Chollet, 2019) define input/output relations over

images. These analogies can be quite sophisticated, relying on knowledge about language,

number, shape, color, symmetry, and other aspects of visual cognition.

Several domains have recently been used to investigate participants’ ability to infer prob-

abilistic generative models for objects such as stochastic tree structures (Stuhlmuller et al.,

2010), hand-written characters in Omniglot (Lake et al., 2015; Lake et al., 2019), and the

fundamental physical parameters of simulated worlds (Ullman et al., 2018). These causal

domains can be very complex. In the simulated world experiments, participants view 5s

55

videoclips of scenes filled with various objects and surfaces, marked in different colors. They

must then infer properties for each surface and object—such as mass or friction coefficients—

as well as global parameters like gravity. Being defined by a hierarchical generative model,

these domains support a variety of tasks. The work of Lake and colleagues on hand-written

characters, for example, includes: classifying characters, parsing characters into strokes,

generating new examples of a character, generating novel characters for an alphabet, and

generating new alphabets.

These tasks share many common traits. Not all domains excel in all areas, but most

excel on most dimensions. They are both familiar and engaging to learners, ideally drawing

on meaningful background knowledge. They frequently support multiple tasks requiring

different kinds of reasoning and operating at multiple levels of abstraction. They contain

objects with complex internal structure over which many relations can be defined. They

support a broad variety of problem difficulties: some are trivially easy and some resist nearly

all attempts at understanding, but most can be reliably learned with a little bit of effort.

They naturally support the full range of algorithmic thinking, including key features like

recursive, pattern-based, and conditional reasoning. Finally, despite everything else, they

remain formally tractable and interpretable, amenable to decomposition into meaningful

primitives that could reside in an LOT.

This chapter presents list functions as a domain for studying human concept learning.

The premise of the domain is simple: concepts consist of computable functions from lists to

lists. We focus specifically on lists of natural numbers. This domain has a long history in

artificial intelligence (Green et al., 1974; Shaw et al., 1975; Biermann, 1978; Green, 1981;

Smith, 1984; Feser et al., 2015; Osera & Zdancewic, 2015; Polikarpova et al., 2016; Cropper

et al., 2019) but is basically unstudied in cognitive psychology. It nonetheless combines many

of the best features of classic concept learning tasks listed above. It also both subsumes many

of these classic tasks and provides tasks similar to several key developmental case studies.

At the same time, list functions open new avenues for exploring algorithmic thinking over

complex structures. We argue that its long computational history and rich potential as a

domain for studying human learning make it a prime candidate for investigating the child

as hacker and cognitive development more broadly.

56

3.1 The domain of list functions

The domain of list functions is simple to describe. Every concept in the domain defines a

rule for creating an output list from an output list. In its most general form, these can be

lists of arbitrary structures, including lists of lists, and the input and output lists do not

need to contain the same kinds of elements. For example:

1. return the input unchanged

2. remove all but the third element

3. reverse the list

4. sum the unique elements less than 50

5. count the elements equal to 5

6. count the elements equal to today’s date

7. replace each number with its name in Hindi

8. return a list of all halting Turing machines

In this general form, the domain is exceptionally broad. Formal explanation requires nothing

less than a complete theory of intelligence. For the sake of simplicity and tractability, we

introduce three restrictions. First, we require that the rules be computable. This excludes

item 8 in the list above. Second, we focus on cases in which the input and output list contain

only natural numbers, which also excludes item 7. Third, we assume that the rules focus

on the unchanging symbolic and structural properties of the inputs rather than requiring

significant context or world knowledge, which excludes item 6 but includes the very similar

item 51. Items 1–5 are in fact all examples of list functions meeting these restrictions.

Additionally, 𝑐1 and 𝑐3 from Chapter 1 are examples of concepts from this domain. 𝑐2 is

not, because it returns a lone natural number, rather than a list, though it could easily be

adapted to return a list containing a single element. 𝑐4 is similarly not a member of this

domain because it takes two arguments rather than one, one of those arguments is not a

list, and it returns a lone natural number. It, too, could be easily adapted by appending

the first input to the second input and returning the output as a singleton list. These

1Figuring out which rules meet these conditions out is itself a list function: given a list of list functions,
remove any which are not computable functions over lists of natural numbers.

57

sorts of manipulations might seem unnatural upon first reading, but our empirical studies

in Chapter 5 show that people can reliably learn and accurately describe functions making

use of these sorts of internal arguments.

As explored in the rest of this thesis, then, the set of list functions consists of com-

putable functions over lists of natural numbers. These concepts are learned inductively from

input/output pairs, written 𝑖 → 𝑜 for input 𝑖 and output 𝑜. One might be given, for example:

[98, 15, 1, 7, 23, 76] → [76, 23, 7, 1, 15, 98]

[63] → [63]

[13, 8, 92] → [92, 8, 13]

[] → []

[36, 19, 54, 82, 13, 12, 2] → [2, 12, 13, 82, 54, 19, 36]

From these, the task would be to infer that the concept is item 3 above, reversing a list.

List functions share many of the best features of classic concept learning domains. First,

list functions, like recent work on hand-written characters, novel environments, or stochastic

trees, can be viewed as part of a hierarchical generative model (Figure 3-2). The highest level

of this model is a type system describing the kinds of objects the world can contain. Given

this, the model can sample the type of the functions in the domain—that is, the basic rule of

the domain itself: concepts takes lists of natural numbers as input and return lists of natural

numbers as output. This means that the restriction to use lists of natural numbers could be

removed or changed to include functions over other kinds of lists. Given a type system, a

model can also sample a language describing the rules for constructing various objects and

the ways in which they behave. Conditioned on these, individual concepts can be sampled.

Inputs can then be sampled conditioned on the concept and the language. These inputs may

or may not be sampled pedagogically, but at the very least, they must satisfy any constraints

imposed by the concept itself. For example, if the concept uses the first element of the list

as an index into the rest of the list, the first element must be no greater than the length of

the list. Finally, outputs can be computed conditioned on an input and the concept. If the

concept happens to be non-deterministic, this last step is also non-deterministic, meaning

that there is interesting distributional structure throughout the entire model. Not all samples

from this model will necessarily include all levels. For example, the basic rule might be to

58

Type System Gτ

Language GC

Type τ

Concept C

Input i

Output o

P(GC |Gτ)

P(τ |Gτ)

P(C | τ,GC)

P(i |C,GC)

P(o | i, C)

τ → t | ∀α.τ
t → α

| t� t
| List t
| Number

. . .

(λ body): β� (α� β)
(head xs): List Number� Number
(tail xs): List Number� List Number
(pred n): Number� Number
(+ m n): Number� Number� Number
(map f xs): (α� β)� List α� List β
. . .

List Number� List Number

(λ (tail $0)) (λ (map (λ (+ 1 $0)) $0))

[3, 4, 9, 7] [31, 6, 98] [56, 12, 73] [9, 2, 5]

[4, 9, 7] [6, 98] [57, 13, 74] [10, 3, 6]

. What other Gτ could there be?

. Given Gτ , what kinds of τ are there? GC? C?

. Given GC , what is Gτ?

. Given GC , what kinds of C are there?

. Given GC , what τ will generate the best C?

. Given τ , can I think of new τs?

. Given τ , what is Gτ?

. Given C, can I think of new Cs?

. Given C, what is τ? GC? Gτ?

. Given C, can I generate i & o?

. What i would most help me learn more about C?

. Given i, what is C?

. What do several is have in common?

. Given C, what makes for a useful i?

. Given i/o pairs and a novel i, what is o?

. Given i and C, what is o?

. Given o and C, what is i?

. Given i/o pairs, what is C? τ? GC? Gτ

. Given i/o pairs, can I generate new i/o pairs?

Figure 3-2: A hierarchical Bayesian model of list functions. The model include: a type system
𝐺𝜏 describing the kinds of possible objects; a language 𝐺𝐶 defining how those objects are
built and how they behave; a type 𝜏 describing what kind of object the target concept is; a
concept 𝐶 which is an expression in 𝐺𝐶 of type 𝜏 ; the input 𝑖 to the concept; and the output
𝑜. The center shows how these various pieces are connected. The right lists representative
questions that can be asked about each level of the hierarchy.

guess a specific number or list of numbers rather than a function from lists to lists. In that

case, there would be no inputs or outputs, and the hierarchy would terminate at 𝐶.

While we focus on inferring concepts from input/output pairs, list functions, like other

domains based on probabilistic generative models, support multiple tasks representing in-

ference about different aspects of the model’s hierarchy. For example, rather than providing

outputs for novel inputs, subjects could be asked to provide verbal descriptions of a concept,

or to write down a program computing the input/output relation. Rather than being given

inputs for which to predict outputs, they could provide inputs for which they are interested

in seeing outputs, similar to the 2-4-6 task. They could also be asked to provide entire

input/output examples, in response to seeing either input/output examples, a verbal de-

scription of the concept, or a program. Other tasks might ask participants to describe what

makes for a good input, or what a series of inputs have in common. Given some experience

59

in the domain, participants could also be asked to generate new concepts, and new examples

for those concepts. They could even be asked to modify the basic rule of the domain about

using lists of natural numbers, devising variants such as using a single number as input or

output, or operating over lists of lists, and so on. Understanding list functions in terms of a

hierarchical model exposes a range of possible tasks for investigating the full extent of what

humans can learn in this domain.

Second, list functions are familiar. Numerate societies provide extensive experience with

sequences, numbers, and sequences of numbers. Sequences have long been proposed to be

a fundamental feature of cognition (Bartlett, 1958), and many people’s early experiences

with number explicitly come in the form of numerical sequences. For example, counting

and skip-counting (e.g. counting by 2 or 10) are simple forms of numerical list manipulation

(Fuson et al., 1982; Fuson, 1988). Other kinds of functions of sequences of numbers are also

common. One must frequently sum a series of numbers, order a series of options, select top

performers based on some quantitative measure, and so on.

As a result, many people have developed extensive background knowledge about the kinds

of things one can do with numbers, with lists, and specifically with lists of numbers. They

know how to perform arithmetic, compare magnitudes, extract digits at various positions

in a number, and test for properties such as whether a number is even or odd, prime or

composite. They know what it means to reverse a sequence, to arrange its elements in some

sort of ascending or descending order, or to select members meeting certain criteria. They

know how to select the first few or the last few, how to remove the first or last few, and how to

extract a subsequence from the middle of a longer sequence. They can iterate over sequences

to find maximums, minimums, means, and modes, or to count the number of elements. The

list goes on: people have dozens of basic skills relevant to processing numerical sequences.

Like any concept learning task, familiarity and naturalness should not be confused with

the task being identical to one that people perform in the world. Very few people naturally

encounter stimuli that look quite like those used in Boolean concept learning, the number

game, CopyCat, or ARC. Nonetheless, they do form rules for classification, and they do

reason analogically. In the same way, people rarely sit down simply to puzzle out the

60

relationship between pairs of lists2. They do, however, interact regularly with sequences

of numbers and the relationships that link them together. All these tasks differ from truly

naturalistic stimuli in ways that make them simpler to study, but they also all capture

important aspects of learning in daily life.

Third, despite their familiarity and naturalness, list functions remain engaging. In our

pilot work, we frequently received comments about the tasks being enjoyable; many people

called them puzzles or games. We conducted these experiments online using Amazon Me-

chanical Turk, where participants routinely complete behavioral experiments. Several people

reported our task being the most interesting they had completed in weeks. Because these

tasks provide a well-defined challenge which is typically just beyond their current skill level

and provide regular feedback, list functions—and most classic concept learning domains—

share much in common with the motivational states of both deliberate practice (Ericsson,

2006) and flow (Csikszentmihalyi, 1990). They present tasks in which participants both

improve rapidly and are motivated to succeed.

Fourth, the stimuli of list functions have complex internal structure. Each list can have

any non-negative number of elements, and the order and repetition of these elements is

significant in a way that it would not be if the stimuli were bags (i.e. multi-sets) or sets.

This structure has a starting point, an end point, and natural procedures for enumerating

elements from either end. Moreover, each element can be one of unboundedly many numbers,

each represented by a string of digits whose order and repetition conveys additional meaning

according to a specific compositional structure. [2, 1, 3] is different from [1, 2, 3] despite

identical elements, and [1, 2, 3] is itself different from [323, 324, 325], even though they both

contain three successive numbers.

Other concept learning domains vary widely on this front. Boolean and 𝑛-ary stimuli,

for example, are typically highly constrained such that each stimulus varies on only a few

dimensions of just two or three levels each. Even when these stimuli have been grouped

together (Piantadosi et al., 2016), they have been grouped in sets where order and repetition

are insignificant. Numerical function learning and the number game both involve numbers

but, again, there is at best a minor role for repetition or order. Text-based analogy problems

2Although, this probably does occur more often than chance encounters with Bongard problems.

61

make order and repetition important, but use alphabetic characters. There are only 26

characters, and they do not contain any internal structure. The stimuli for Bongard problems

and Omniglot, on the other hand, consist of line drawings and can thus contain seemingly

arbitrary internal structure. ARC problems occupy an interesting middle ground. They use

two-dimensional grids of up to 30 × 30, a sort of list of lists, and the order and repetition

of elements in this grid are important. As with text-based analogies, however, there are a

small number of elements (i.e. 10) lacking internal structure. The 2-4-6 task and sequence

prediction tasks are perhaps closest to list functions, typically using a sequence of numbers

whose order and repetition play a significant role.

One particular strength of list functions stimuli is that they include natural numbers.

Number, particularly natural number, is one of the richest formal conceptual systems which

people possess. Its development builds on core cognitive systems, interacts with natural

language, and supports the development of later conceptual systems like integers, rational

numbers, and real numbers (see Carey, 2009, for detailed discussion). It is deeply integrated

into daily life in numerate societies, such that people learn many interrelated numerical

systems for counting objects, dealing with currency, and reasoning about time. This perhaps

explains why it is a central feature of several classic domains including Wason’s 2-4-6 problem,

Tenenbaum’s number game, function learning, and sequence prediction. It also features

peripherally in Boolean concept and analogy domains via small number counting (e.g. How

many stripes on the shape? How many repetitions of the first letter?). People can bring

all this knowledge about the structure and interrelations of numbers to bear in learning

list functions. Moreover, arranging numbers in sequences allows them to play many roles.

They can be bare symbols, as in reverse the order of the unique elements, cardinal values,

as in sum the elements of the list, or ordinal values, as in remove the element indexed by

the first element if it is less than 10. This last example shows how the same concept might

require taking multiple perspectives, in this case using numbers as ordinals, symbols, and

cardinals. In this way, list functions expose interactions between different perspectives on

the same object and how they influence learning. They make it possible to see how these

various perspectives compete for a learner’s attention and what sorts of cues suggest one

role versus another to a given learner. For the other domains discussed here which feature

62

number centrally, this is not the case; they primarily feature numbers as cardinals.

Fifth, list functions vary widely in their learnability. Some are exceptionally simple, such

as:

[1, 4, 23, 21] → [15, 8, 34, 6]

[60, 7] → [15, 8, 34, 6]

[8, 70, 3, 67, 54, 54, 6, 97, 7] → [15, 8, 34, 6]

[3, 3, 6, 55, 63, 7] → [15, 8, 34, 6]

[29] → [15, 8, 34, 6]

which encodes a simple constant function: every input produces the output [15, 8, 34, 6].

Even after considering just a single example, the output seem sufficiently unlikely to be a

function of the input to make the correct hypothesis a likely candidate. Other functions, by

contrast are remarkably difficult, such as:

[29, 88, 44, 75, 5, 17, 36, 0, 89, 31] → [29, 88, 17, 36]

[54, 4, 7, 43, 8, 97, 25, 5, 0] → [54, 43, 5]

[24, 41, 96, 14, 93, 47] → [41, 96]

[19, 81, 1, 53, 85, 3, 97] → []

[3, 76, 20, 11, 86, 8, 5, 94] → [3, 76, 11, 86, 5]

The concept here is to keep only elements followed by an even element. Learning this de-

pendency structure has proven very difficult for people. Even harder rules are possible. One

could, for example, create multiple conditions based on list length, or introduce long range

dependencies between elements that are several items apart in the list, or select elements

using large numbers that must first be interpreted modulo the length of the list. Many of

these are likely to be sufficiently difficult to be practically unlearnable for a novice subject in

any reasonable timeframe. They might, however, be excellent families of concepts to use in

exploring curriculum-based learning. As with 𝑐1 in Chapter 1, the right series of antecedent

concepts might make any one of these difficult concepts significantly easier to learn.

While there are many concepts likely to sit either near the floor or the ceiling of human

performance for typical learners, there is also a large set which smoothly connects these two

points. Here are three, roughly in order of increasing difficulty:

63

[7, 51, 94, 72, 88, 19] → [7, 19, 51, 72, 88, 94]

[2, 0, 92, 21, 33] → [0, 2, 21, 33, 92]

[75, 32, 46, 71, 49, 60] → [32, 46, 49, 60, 71, 75]

[10, 12, 11, 8, 9, 7] → [7, 8, 9, 10, 11, 12]

[52, 87, 27, 25] → [25, 27, 52, 87]

[2, 0, 92, 21, 33] → [3, 2, 95, 25, 38]

[7, 51, 94, 72, 88, 19] → [8, 53, 97, 76, 93, 25]

[75, 32, 46, 71, 49, 60] → [76, 34, 49, 75, 54, 66]

[10, 12, 11, 8, 9, 7] → [11, 14, 14, 12, 14, 13]

[52, 87, 27, 25] → [53, 89, 30, 29]

[36, 45, 15, 70, 85, 2] → [45]

[90, 54, 16, 3] → [16]

[69, 63, 50, 8, 86, 17, 0, 80, 19, 7] → [0]

[62, 0, 1] → [62]

[95, 51, 9, 93, 6, 5, 31, 47, 4] → [93]

The first of these sorts the list and was likely recognizable after considering just the first

example or two. The second adds the index of each element to the value of the element itself

and might have required a few examples to learn or perhaps very careful examination of a

single example. The third removes all but the element whose position is indicated by the last

element in the list. Learning this typically requires carefully studying multiple examples.

List functions thus hit a sweet spot that both exposes the abilities and the limitations of

human learners. Many classic domains are similar, such as the general class of Boolean and

𝑛-ary concepts over a set of stimuli, visual and textual analogies, and sequence prediction

tasks. Function learning is also a fairly large class of problems, though the relatively simpler

stimuli (i.e. inputs and outputs which are both a single number) might limit the number

of concepts which remain easily learnable. Nearly all the structure in complex concepts

remains latent. By contrast, some domains were explicitly designed with a definite ceiling

on difficulty. Several studies of Boolean concepts, for example, limit the complexity or form

of the formulae studied (Bruner et al., 1956; Shepard et al., 1961; Feldman, 2000). Similarly,

64

the number game selects from a finite set of hypotheses chosen to be relatively straightforward

to induce, and the characters in Omniglot have been used in actual alphabets and are thus

likely bounded in total complexity.

Sixth, list functions make it possible to investigate the full range of algorithmic thinking.

For example, they support humans’ excellent abilities for detecting structure-based patterns,

as in:

[0, 5, 2, 4, 3, 1, 6, 8, 7, 9] → [2, 5, 0, 4, 3, 6]

[9, 8, 1, 2, 7, 4, 5, 6, 3, 0] → [1, 8, 9, 4, 7, 5]

[7, 9, 0, 2, 6, 8, 3, 5, 1, 2] → [0, 9, 7, 4, 6, 3]

[6, 7, 1, 3, 2, 0, 8, 9, 4, 5] → [1, 7, 6, 4, 2, 8]

[5, 3, 9, 8, 0, 7, 2, 1, 4, 6] → [9, 3, 5, 4, 0, 2]

This concept involves multiple steps, but each is transparently reflected in the final output,

which contains element 3, element 2, element 1, the number 4, element 5, and element 7,

in that order. This concept can be understood as a form of something studied in computer

science as pattern matching. An abstract template or pattern is used to extract various pieces

of the input (i.e. elements 1, 2, 3, 5, and 7), and these pieces are then used to construct

the final output. This sort of pattern-based reasoning is common in many programming

languages and has been a key part of artificial intelligence systems for decades (Sussman,

1973). List functions also support case-based and conditional reasoning, as in the following:

[4, 8, 3, 7, 8] → [4, 8, 3, 7, 8, 3]

[5, 8, 2, 9, 0, 0] → [5, 8, 2, 9, 0, 0, 9]

[7, 0] → [7, 0]

[9, 1, 1, 5, 1, 6, 5, 6] → [9, 1, 1, 5, 1, 6, 5, 6, 9]

[4, 7, 4, 6] → [4, 7, 4, 6]

[3, 8, 5] → [3, 8, 5, 3]

[4, 2, 2, 6, 8, 5, 4] → [4, 2, 2, 6, 8, 5, 4]

[4, 8, 9, 2, 5, 7, 1, 0, 6, 2] → [4, 8, 9, 2, 5, 7, 1, 0, 6, 2, 9]

[5, 7, 7, 3, 0, 2, 0, 6, 1] → [5, 7, 7, 3, 0, 2, 0, 6, 1, 3]

This concept appends a 3 if the input contains 3, otherwise appending a 9 if the input contains

a 9, otherwise appending nothing. These conditions can be nested and made arbitrarily

65

complex (e.g. if the first element is prime or even, xor the second element is greater than

the first or equal to 0, then reverse the list.). List functions can also rely on recursive and

iterative reasoning. This is evident in some of the concepts already considered, such as

reversing a list, or scanning a list to see if it contains certain elements. Here are examples

from two more explicitly iterative/recursive concepts:

[87, 58, 78, 1, 51] → [78, 85, 87, 10, 15]

[9, 76, 3, 4, 35, 77, 73, 91] → [90, 67, 30, 40, 53, 77, 37, 19]

[32, 13, 52] → [23, 31, 25]

[65, 36, 28, 7, 41, 39, 93] → [56, 63, 82, 70, 14, 93, 39]

[5, 61, 72, 8, 6, 98, 22, 0, 50] → [50, 16, 27, 80, 60, 89, 22, 0, 5]

[68, 40, 6, 1, 5, 17, 0, 85, 82, 9] → [68, 40, 6, 0, 82]

[7, 43, 66, 79, 68, 33, 8] → [66, 68, 8]

[99, 65, 46, 2, 6, 23, 78, 1, 58] → [46, 2, 6, 78, 58]

[4, 75, 8, 63, 18, 3, 51, 7] → [4, 8, 18]

[54, 97, 49, 5, 6, 35, 2, 1, 70] → [54, 6, 2, 70]

The first concept iterates over the list and swaps the digits of each element. It is an example

of an algorithmic pattern known as a map. In a map, a function is applied to each item. In

this case, the function being mapped reverses the digits of a number. The second concept

combines iteration and conditional reasoning, removing items if they are odd and keeping

them if they are even. This pattern is called a filter. It iteratively tests each element and

filters out any which fail the test. In this case, the test is simply whether an element is even.

Here are examples of two other common iterative/recursive patterns:

[12, 6, 6, 7, 12, 6] → [12, 18, 25]

[4, 6, 1, 6, 1, 0, 9] → [4, 10, 11, 11, 20]

[20, 1, 20, 1, 1, 20] → [20, 21]

[7, 5, 1, 5, 0, 7, 5] → [7, 12, 13, 13]

[2, 1, 1, 8, 15, 9, 8, 15, 2] → [2, 3, 11, 26, 35]

66

[6, 13, 1] → [6, 7, 8, 9, 10, 11, 12, 13]

[34, 67, 3] → [34, 37, 40, 43, 46, 49, 52, 55, 58, 61, 64, 67]

[0, 50, 5] → [0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50]

[6, 18, 2] → [6, 8, 10, 12, 14, 16, 18]

[22, 62, 10] → [22, 32, 42, 52, 62]

The first concept transforms an input into the cumulative sum of its unique elements, in

order of first appearance. Computing the unique elements and computing a cumulative sum

are both examples of a pattern known as a fold. When mapping over a list, the function is

applied directly to each element. There is no hidden state on which the function can rely.

Folding, however, allows iteration with state. It maintains a data structure that can encode

information about the work that has been done during past iterations. When the iteration is

complete, this structure is returned. The entire list is folded into the structure. In the case

of computing unique elements, the state tracks the set of elements seen so far. In the case

of cumulative sums, it tracks the sequence of partial sums computed so far. Other common

example include computing the length of the list, the maximum, and the minimum. Each of

these folds the list into a single value: the number of elements, the largest element, or the

smallest element, respectively. The second concept skip-counts from the first element to the

second element, incrementing according to the third element. This concept is an example

of a pattern known as an unfold. If a fold consumes a list to produce a single value (which

could itself be a list), an unfold uses a single value (which could also be a list) to iteratively

generate a list. In this case, it takes a triple describing the parameters of the skip-count,

and then iteratively constructs each element of the output. Folding and unfolding are very

powerful patterns that, when combined, can describe an immense range of iterative/recursive

concepts (Gibbons, 2003), including mapping and filtering. They also both demonstrate ways

for list functions to rely on internal state, maintaining latent structures which are necessary

to explain the overall function.

We could continue with demonstrations of tasks requiring any number of other core

algorithmic concepts—hashing, non-determinism, parameter use, and so on—because list

functions are in fact computationally universal. The Turing machine (Turing, 1936) is a

formal model of computation built around the rule-based manipulation of a list of symbols.

67

It is one of the standard models of computation, such that it is strongly suspected that

Turing machines can represent every possible computable function over the natural numbers.

They do so by representing a computation as a finite set of rules for manipulating the

list of symbols. Because there must be finitely many rules, and the format of the rules

strongly limits their complexity, any given Turing machine can deal with at most finitely

many symbols. If we treat natural numbers as symbols, list functions provide infinitely many

symbols and so can certainly represent any finite number of symbols. Given the right set of

rules, then, the list function domain over natural numbers can be used to model any Turing

Machine and so is computationally universal. Moreover, there are a class of Turing machines

which are themselves universal in that they treat their input as a description of another

Turing machine and its input. These universal machines can simulate any other possible

Turing machine. This implies that there are individual list functions which are themselves

Turing complete, capable of representing any possible computation.

Some of the classic concept learning domains share this computational richness. Analogy

problems, sequence prediction, and the 2-4-6 task can all specify algorithmically sophisticated

problems in natural ways. Numerical functions can also include complex algorithms3, though

the way this is typically done—encoding complex structures and functions as numbers—

would likely feel unnatural to typical learners. Many other domains strongly limit their

overall computational complexity. Omniglot, simulated worlds, and the number game, for

instance, were all designed to capture learning in which algorithmic complexity is not a

prominent feature. Boolean and 𝑛-ary concepts, particularly first-order concepts, can be

Turing-complete, as demonstrated by the logic programming paradigm used in languages like

Prolog (Bratko, 2001). As studied in cognitive psychology, however, the domain supports

limited algorithmic content, mostly focused on conditional reasoning and basic forms of

quantification.

Seventh, despite all their computational power, operations over lists of numbers are easily

formalized. Much of the earliest work on automated programming and program synthesis

revolved around manipulating lists of data (Smith, 1984; Biermann, 1978; Green, 1981;

3Early formal definitions of computatability focused explicitly on computations over natural numbers, so
the set of computable functions from integers to integers is a paradigmatic example of Turing-completeness.

68

Shaw et al., 1975; Green et al., 1974). They continue to be a tractable domain of interest

in artificial intelligence and machine learning today (Feser et al., 2015; Osera & Zdancewic,

2015; Polikarpova et al., 2016; Cropper et al., 2019). At first glance, this appears to be mere

historical accident. Much of the early work on program synthesis used the lisp programming

language introduced by McCarthy (1960). Lisp uses lists as a model of both programs and

the data those programs manipulate. It treats programs as nested lists of symbols defining

rules for manipulating other lists of symbols4. Learning lisp programs then largely consists

of learning list functions, making list functions one of the early target domains for program

synthesis.

Looking more deeply, however, the reason list functions appear so early, and continue to

be studied today in artificial intelligence, is perhaps because numbers and lists are among

the simplest possible recursive structures. A list containing objects of type X can be defined,

for example, as either an empty list or a list containing an X prepended to a list of Xs. This

prepending operation is called Cons for historical reasons, so this definition can be formalized

as:

List X = Empty | Cons X (List X).

Natural numbers can be defined using an even simpler unary encoding where numbers are

either Zero or the Successor of a number. That is, numbers are like lists that cannot carry

data. They can be written as:

Number = Zero | Successor Number.

These four symbols—Empty, Cons, Zero, and Successor—define two recursive structures.

Using them according to the two rules given above makes it possible to construct any list of

4Technically, the basic syntax of lisp consists of expressions that are either atomic symbols, such as A and
B, or ordered pairs of expressions. The pair of A and B, for example, is written (A . B). These expressions
can be thought of as trees. Each atom is a tree consisting of a single node, while an ordered pair represents
a binary tree whose left and right children are the first and second elements of the pair, respectively. Most
of the time, however, these trees are interpreted as lists, so much so that lisp stands for LISt Processor. In
fact, the first thing McCarthy (1960) does after describing these pair-based expressions is define how they
can be used to represent lists. Pairs are nested such that the first element represents an element of the list,
and the second element represents the rest of the list. A special symbol NIL represents the empty list. For
example, the list [1, 2, 3, 4, 5] is written as (1 . (2 . (3 . (4 . (5 . NIL))))).

69

numbers, any list of lists of numbers, and so on. The set of lists we can build using these

four symbols is unboundedly large and varied.

If Empty, Cons, Zero, and Successor act as constructors, i.e. the symbols by which lists

and numbers are built, it is also useful to define destructors, i.e. symbols by which lists

and numbers are decomposed into their basic parts. For lists, the fundamental destructors

are Head, which returns the first element of a list, and Tail, which returns all but the first

element. Head is undefined over Empty, while Tail returns Empty again. For numbers, the

basic destructor is Predecessor, which removes a single Successor; it returns Zero for input

Zero. That is, the destructors obey these rules:

Head (Cons X Y) = X

Tail (Cons X Y) = Y

Tail Empty = Empty

Predecessor (Successor X) = X

Predecessor Zero = Zero

Formalizing the entire domain of list functions requires not only defining constructors and

destructors, but also all possible operations over those structures. Since the space is Turing-

complete, that means embedding lists and numbers into a Turing-complete language. The

lambda calculus is a natural choice (Church, 1932; Barendregt et al., 1984). It is a simple

Turing-complete formalism which represents computation through function abstraction and

application. Function abstraction introduces variable bindings, so an expression, 𝑒, composes

variables, abstractions, and applications as follows:

𝑒 → 𝑥 (variable)

| 𝜆𝑥. 𝑒 (abstraction)

| 𝑒 𝑒 (application)

Expressions are considered equal up to variable renaming, and parentheses are used freely

to clarify grouping. They are evaluated using 𝛽-reduction, 𝑋→𝑌 , which formalizes the

notion of applying a function to an argument. When a function abstraction is applied to

an argument, ((𝜆𝑥.𝑀) 𝑁), 𝛽-reduction maps the variable, 𝑥, to the argument, 𝑁 , written

70

Name Description Definition

True Boolean true 𝜆𝑥.𝜆𝑦.𝑥
False Boolean false 𝜆𝑥.𝜆𝑦.𝑦
Pair ordered pair (𝑥, 𝑦) 𝜆𝑥.𝜆𝑦.𝜆𝑓.𝑓 𝑥 𝑦
First 𝑥 in the pair (𝑥, 𝑦) 𝜆𝑝.𝑝 True
Second 𝑦 in the pair (𝑥, 𝑦) 𝜆𝑝.𝑝 False
Empty empty list 𝜆𝑥.True
Cons prepend element to list Pair
Head first element in list First
Tail all but first element in list Second
Zero natural number 0 𝜆𝑓.𝜆𝑥.𝑥
Successor successor of 𝑛 𝜆𝑛.𝜆𝑓.𝜆𝑥.𝑓 (𝑛 𝑓 𝑥)
ShiftInc (𝑚,𝑛) → (𝑛, 𝑛+ 1) 𝜆𝑥.Pair (Second 𝑥) (Successor (Second 𝑥))
Predecessor predecessor of 𝑛 𝜆𝑛.First (𝑛 ShiftInc (Pair 0 0))
Y recursive operator 𝜆𝑔.(𝜆𝑥.𝑔 (𝑥 𝑥)) (𝜆𝑥.𝑔 (𝑥 𝑥))

Table 3.1: Church encodings for Booleans, lists, numbers, and 𝑌 , a fixpoint operator used
to implement recursion. In this encoding, lists are nested pairs, so the encoding for Pair,
First, and Second are reused for Cons, Head, and Tail, respectively.

𝜎 ≡ {𝑥 ↦→ 𝑁}. This substitution, 𝜎, is then applied to 𝑀 , written 𝜎𝑀 , which replaces

occurrences of 𝑥 with 𝑁 throughout 𝑀 . That is:

(𝜆𝑥.𝑀) 𝑁 → {𝑥 ↦→ 𝑁}𝑀

For example:

(𝜆𝑣.𝜆𝑤.𝑣 𝑤 𝑣) (𝜆𝑥.𝜆𝑦.𝑥) (𝜆𝑧.𝑧) → (𝜆𝑣.(𝜆𝑥.𝜆𝑦.𝑥) 𝑤 (𝜆𝑥.𝜆𝑦.𝑥)) (𝜆𝑧.𝑧)

→ (𝜆𝑥.𝜆𝑦.𝑥) (𝜆𝑧.𝑧) (𝜆𝑥.𝜆𝑦.𝑥)

→ (𝜆𝑦.𝜆𝑧.𝑧) (𝜆𝑥.𝜆𝑦.𝑥)

→ (𝜆𝑧.𝑧)

There are several well-known ways to encode numbers and lists into lambda calculus (Koop-

man et al., 2014), and definitions for Boolean data structures and basic iterative/recursive

procedures are also well known. One standard method known as the Church encoding5 is

5Alonzo Church introduced both the lambda calculus and this specific method of encoding data types.

71

shown in Table 3.1. The basic idea is to define a function for each constructor and destructor,

such that the behavior of each function satisfies the rules given above. Because the lambda

calculus is Turing-complete, these embeddings then allow lambda calculus to represent any

computation taking a list as input and returning a list as output and can thus represent any

list function. As a simple example, consider a function, StartSeven, which takes a list and

replaces the first element with 7. Here is a definition and its application to the list [1, 2, 3]6:

StartSeven ≡ (𝜆𝑥. Cons 7 (Tail 𝑥))

(StartSeven [1, 2, 3]) ≡ ((𝜆𝑥.Cons 7 (Tail 𝑥)) [1, 2, 3]) Definition of StartSeven
→(Cons 7 (Tail [1, 2, 3])) Reduction
≡ ((𝜆𝑥.𝜆𝑦.𝜆𝑓.𝑓 𝑥 𝑦) 7 (Tail [1, 2, 3])) Definition of Cons
→((𝜆𝑦.𝜆𝑓.𝑓 7 𝑦) (Tail [1, 2, 3])) Reduction
→(𝜆𝑓.𝑓 7 (Tail [1, 2, 3])) Reduction
≡ (𝜆𝑓.𝑓 7 ((𝜆𝑝.𝑝 False) [1, 2, 3])) Definition of Tail
→(𝜆𝑓.𝑓 7 ([1, 2, 3] False)) Reduction
≡ (𝜆𝑓.𝑓 7 ((Cons 1 [2, 3]) False)) Definition of a list
≡ (𝜆𝑓.𝑓 7 (((𝜆𝑥.𝜆𝑦.𝜆𝑓.𝑓 𝑥 𝑦) 1 [2, 3]) False)) Definition of Cons
→(𝜆𝑓.𝑓 7 (((𝜆𝑦.𝜆𝑓.𝑓 1 𝑦) [2, 3]) False)) Reduction
→(𝜆𝑓.𝑓 7 ((𝜆𝑓.𝑓 1 [2, 3]) False)) Reduction
→(𝜆𝑓.𝑓 7 (False 1 [2, 3])) Reduction
≡ (𝜆𝑓.𝑓 7 ((𝜆𝑥.𝜆𝑦.𝑦) 1 [2, 3])) Definition of False
→(𝜆𝑓.𝑓 7 ((𝜆𝑦.𝑦) [2, 3])) Reduction
→(𝜆𝑓.𝑓 7 [2, 3]) Reduction
≡ [7, 2, 3]) Definition of Cons

This is not to say that people represent list functions either using lambda calculus or the

particular structures given here. They almost certainly use more complex representations

building on ancient core cognitive representations and an LOT with a far richer set of prim-

itives. The discussion here merely demonstrates that lists and list functions can be formally

defined extremely simply and without extensive hand-engineering. This simple definition

provides a minimal starting point for formal investigation. In practice, numbers and lists are

6For legibility, we use 0 ≡ Zero, 1 ≡ Successor Zero,. . ., and bracket notation for lists, where [] ≡ Empty,
[1] ≡ (Cons 1 Empty), [1, 2] ≡ (Cons 1 (Cons 2 Empty)),. . .

72

such fundamental data structures that they have both been deeply explored in computer sci-

ence and software engineering. Programming languages often permit representing numbers

in a variety of bases beyond the unary representation discussed here. Binary, decimal, and

hexadecimal are common choices, and each can be encoded using a variety of representa-

tions. Similarly, the list structure we discuss here is called a singly-linked list: any given list

provides access to its first element and a link pointing to the rest. Computer scientists have

developed many other implementations with different properties, including: resizable vec-

tors, doubly-linked lists, zipper lists, skip lists, difference lists, and functional random-access

lists (Okasaki, 1999; Cormen et al., 2009). Most general-purpose programming languages

contains mature libraries for working with lists and with numbers; these libraries define

dozens of operations over these structures.

Other domains which rely primarily on discrete data structures are similarly straight-

forward to implement, such as: Boolean and 𝑛-ary concepts, numerical and Boolean rule

learning tasks, function learning, sequence prediction, text-based analogies, and ARC. Those

which rely on fine visual detail, such as Bongard problems and Omniglot’s hand-written char-

acters, require a great deal of computational machinery and hand-engineering to formalize

(e.g. Lake et al., 2015). The inference of probabilistic programs specifying, for example, sim-

ulated worlds or hand-written characters occupies a sort of middle ground. It too, requires a

significant amount of computational machinery, though less than for arbitrary images, and

the objects to be learned (i.e. the probabilistic programs) are themselves simpler than the

full set of weights for, e.g. a deep network.

3.2 Capturing classic domains and developmental case

studies

List functions compare well with classic concept learning tasks on a broad spectrum of fea-

tures and are well situated as a tool for studying human concept learning. In this section, we

show how five of these classic tasks can actually be seen as natural subclasses of list functions.

At the same time, list functions naturally encode problems which are unlikely to appear in

73

any of these classic tasks. We also show how list functions can be used to capture the essen-

tial structure of several key tasks from developmental psychology, including Give-a-Number

and How-Many from the counting literature (Wynn, 1992b), simple arithmetic problems (e.g.

Siegler & Jenkins, 1989), and seriation tasks (Piaget, 1952; Inhelder & Piaget, 1964). List

functions thus provide a unifying way to examine a very general class of concepts spanning

multiple kinds of inductive learning studied in cognitive and developmental psychology.

One of the simplest domains to translate to the list domain is function learning. In their

most basic form, these problems can be modeled using input and output lists that each

contain a single element, such as:

[12] → [20]

[6] → [8]

[30] → [56]

The function here is 𝑓(𝑥) = 2𝑥 − 4. Most numerical function learning tasks, however,

rely on rational numbers. These could be encoded using natural numbers by giving inputs

and outputs of two elements. The number 35.5, for example, could either be represented

as the numerator and denominator of the rational, [71, 2], or the integral and fractional

parts, [35, 5]. The latter is relatively similar to how numbers are written in many parts

of the world, though conceptually cumbersome. A better alternative might simply be to

extend the domain to allow rational numbers. Doing so would provide a close match to

the original task. List functions also provide interesting options for generalizing the task,

such as providing multiple inputs at a time, changing the function based on the position of

a number in the list, or creating multivariate functions which require multiple elements as

input (e.g. 𝑎𝑥1 + 𝑏𝑥2 + 𝑐𝑥3 + 𝑑).

Sequence prediction tasks, where participants are given a partial sequence and asked to

produce the next element, are also straightforward to interpret as list functions. Given some

input list, the task is to provide as output a singleton list containing the next element, as in:

[2, 4, 8] → [16]

[6, 12, 24] → [48]

[5, 10, 20, 40] → [80]

74

Alternatively, one could append the new element to the input, reproducing the input se-

quence with one additional member. At their core, these tasks ask individuals to infer and

extend some generative process from examples. They are, in that sense, a particular kind

of unfolding7. List functions provide a way to explore these and other kinds of unfolding,

such as generating a list from arguments rather than examples as was done in the previous

section, within a single framework.

Rule learning tasks are similarly easy to translate. The 2-4-6 task, for example, could

be encoded by providing an three-element list as input and returning a single-element list

containing 1 if the input is included in the target concept, and 0 otherwise. The following,

for example, provides examples based on the original task, numbers in ascending order :

[2, 4, 6] → [1]

[3, 10, 19] → [1]

[6, 4, 2] → [0]

The number game has a slightly different structure. Participants are given elements taken

from the target concept and must then generalize to predict which additional elements are

in the set defined by the concept. This can be framed as a list function in which each input

contains a single number, and the output is either 1 or 0 to signify inclusion or exclusion

from the set, respectively. For example, the following are examples for the concept divisible

by 10

[10] → [1]

[15] → [0]

[70] → [1]

In an experiment, learners would first be given only positive examples. They would then

be asked to make predictions about the remaining elements. Filtering problems, like those

discussed in the previous section, provide another sort of rule learning task similar in many

ways to the Boolean concept learning paradigm in Piantadosi et al. (2016). List functions

7They also present a sort of meta-induction problem. Each input list provides examples of a slightly
different generative process unfolding. When observing several input/output pairs, learners must infer an
abstract process that they can fit to each example.

75

provide an interesting generalization of this task: it supports concepts where individual

elements—e.g. the first element, or the first few elements—can be interpreted as arguments

which parameterize how to process the set described by the remainder of the list.

Analogy problems are perhaps most directly translated from text-based domains like seek-

whence, jumbo, and CopyCat. In that case, one simply substitutes numbers for characters,

most obviously using A = 1,B = 2, . . . Then, the introductory example of replace the last

element with its successor would have examples like:

[1, 2, 3] → [1, 2, 4]

[5, 9, 3] → [5, 9, 4]

[28, 16, 55, 78, 0, 41] → [28, 16, 55, 78, 0, 42]

Given the number of relations defined over number which are not available for alphabetic

characters, this encoding makes it possible to test a much wider variety of analogies. ARC

problems can be seen as a special way of presenting functions over lists of lists of the numbers

0–9, a way that takes advantage of our visual intelligence. At their core, however, they are

also another form of list processing problem, and many of the dynamics observed in ARC

problems can be studied in some form even in simple one-dimensional lists.

Finally, there are multiple ways to encode Boolean and 𝑛-nary formulae as list functions.

One option is to focus on formulae defined over properties of numbers themselves (e.g. number

in the tens digit, number in the ones digit, even or odd, prime or composite), though these

properties might not be as obvious as visual stimuli varying in shape, number, color, or

size. In this case, the input would be a single arbitrary number and the output would be a

single list of either 1 or 0 encoding of whether the formulae was true or false, respectively.

Another option would be to allow each position in the list to encode a different feature. If

each feature were Boolean, then the input would be a list of 0s and 1s, one for each feature,

and the output would again be a single 0 or 1, depending on whether the input satisfied the

formula. This might look like the following for the concept (𝑥1 ∧ 𝑥3) ∨ (𝑥2 ∧ ¬𝑥4):

76

[0, 1, 0, 0] → [1]

[1, 0, 1, 0] → [1]

[1, 1, 0, 0] → [0]

[1, 1, 0, 1] → [0]

This encoding separates the Boolean concept itself from the more naturalistic object cate-

gorization setting in which it is typically studied. This is potentially problematic, in that

it divorces explicit feature-based logical reasoning from any sort of implicit reasoning that

might be supported by visual cognition or systems for creating and reasoning about kinds.

It is potentially beneficial for the same reason: it helps to disentangle the roles of multi-

ple systems that might contribute to category learning overall. List functions extend these

sorts of problems in multiple ways. Each element need not be Boolean or 𝑛-ary. They can

be arbitrary numbers. These numbers can then be combined using arithmetical as well as

logical operations. This blurs the line between Boolean concept learning and multivariate

function learning. Perhaps more importantly, though, lists permit a variety of algorithmic

tools beyond either logical connectives or arithmetic operators. Boolean concepts can be de-

fined which make use of iteration, recursion, and pattern-based reasoning and thereby push

studies of human concept learning into new territory.

In addition to classic concept learning tasks from cognitive psychology, list functions

can be used to model key tasks from developmental psychology. These encodings simplify

the learning tasks to make formal modeling feasible. In doing so, they allow modelers to

grapple with important psychological questions about the dynamics of learning and the rep-

resentational resources that support those dynamics. We specifically consider four examples:

seriation, the Give-a-Number and How-Many tasks from the counting literature, and small

number arithmetic.

Seriation is a basic developmental task that has been studied since Piaget (1952): given a

set of orderable objects, arrange them so that they are in order. The task has been modeled

several times and basic empirical phenomena are well known (Young, 1976; Mareschal &

Shultz, 1999; Schultz & Vogel, 2004; McGonigle-Chalmers & Kusel, 2019). This task is

straightforward to express as a list function. Given an array of evenly spaced numbers in

random order, rearrange the elements so they are in either ascending or descending order:

77

[25, 20, 30, 15, 10] → [10, 15, 20, 25, 30]

[15, 19, 11, 17, 13] → [11, 13, 15, 17, 19]

[9, 5, 2, 6, 4, 0] → [0, 2, 4, 5, 6, 9]

A model working on this task could be given a relatively minimal LOT, such that it would

have to develop notions of size, comparison, and order, much as children are hypothesized to

do (Greenfield et al., 1972). They might also need to develop the notion that list elements

can themselves be lists—i.e. that there is such a thing as a list of lists—would could be

useful in learning to seriate and combine sub-arrays, as children frequently do. Finally, there

are many sorting algorithms; studying the development of sorting in such a constrained

environment might provide insight into what learning mechanisms support the development

of the algorithms seen in children as opposed to those favored in computer science for their

formal properties (Cormen et al., 2009).

Wynn (1990b) describes two number learning tasks—Give-a-Number and How-Many—

which have since become standard parts of the counting and number learning literature. Both

test a child’s ability to reason about set cardinalities through counting. In Give-a-Number,

children are given a large collection of objects and asked to provide a subset containing a

specific number of objects. This can be modeled as a list function which takes as input a

long list and selects a sublist. To encode both the set and the query, the first item in the

list can be used to encode the number of items to retain from the remainder of the list:

[3, 0, 0, 0, 0, 0] → [0, 0, 0]

[6, 0, 2, 4, 9, 5, 0, 1, 4] → [0, 0, 2, 1, 5, 4]

[4, 6, 1, 0, 2, 3] → [6, 1, 0, 2]

As shown in the examples, the objects to be given can either be treated as identical or as

distinct, and the order in which objects are given can be ignored so long as the correct

number of items is provided. In How-many, children are given a set of items and asked to

name its cardinality. This can be modeled simply as computing the length of a list of objects:

[3, 3, 3, 3, 3] → [5]

[4, 1, 2] → [3]

[4, 0, 9, 2] → [4]

78

One potential limitation of both these encodings is that numbers play roles as both symbolic

objects and as cardinalities. While this is a benefit for the domain overall, it is in this case

unlike the experimental tasks. For children, the number words used to label sets are clearly

different from the toys and small objects composing the sets themselves. It is straightforward

to extend the domain to include lists with multiple kinds of objects, including bare symbols.

In a modeling setting, one would presumably limit a model’s LOT so that it did not extend

to treat large, multi-digit numbers as numbers, since the task is to model early number

knowledge. In that case, using large numbers to represent objects would be functionally

similar to introducing entirely new kinds of symbols.

Finally, small number addition problems of the kind discussed in Chapter 2 are also

straightforward to encode as list functions. In this case, the input is a pair of numbers, and

the output is a singleton containing the sum:

[5, 2] → [7]

[1, 8] → [9]

[3, 3] → [6]

All these tasks differ in important ways from the actual tasks which children face. Casting

them as list functions is valuable, however, for at least three reasons. First, it isolates the

development of a symbolic, language-like conceptual system for describing the dynamics of

the task from, for example, perceptual and motor components. This is useful because these

dynamics are, even in isolation, likely to be computationally sophisticated and challenging to

model. Second, the detailed empirical studies which already exist for these domains can be

used to help guide the kinds of learning mechanisms and LOTs which might be explored in

computational models of these and other tasks. Third, it suggests that a detailed exploration

of list functions is likely to shed light on aspects of learning that go far beyond the domain

itself, extending even to central questions in cognitive development.

79

3.3 Conclusion

The domain of list functions is very simple to describe but incredibly rich in its scope,

providing structured stimuli and a large number of natural problems that can be scaled to

contain arbitrary computational complexity. Concepts describe functions which take a list as

input and return a list as output, where both lists contain only natural numbers. It compares

well with classic concept learning domains on a broad set of features and is well situated as a

tool for studying human concept learning. It is psychologically natural and engaging, drawing

on significant background knowledge. It allows for many kinds of algorithmic reasoning and

features numbers variously as symbols, ordinals, and cardinals. The domain is also formally

tractable, and seems likely to capture a wide range of variance in learning mechanisms and

abilities. It also has a long history in artificial intelligence, continuing to the present day.

Moreover, list functions include natural subsets related to many classic concept learning

domains, suggest generalizations of these tasks, and provide tasks that go beyond any classic

domain. They also provide a way to isolate aspects of conceptual development involved in

several prominent case studies from developmental psychology.

Despite all their advantages, list functions have not been used in any general way to study

human learning except our own preliminary work (Rule et al., 2018). The combination of

psychological familiarity, rich structure, algorithmic sophistication, and formal tractability,

however, make them a prime candidate for exploring the child as hacker both computationally

and empirically. In Chapter 4, we examine HL, a computational model of inductive learning

designed to provide a hacker-like approach to learning in rich domains like list functions.

The rest of the thesis then investigates human learning of list functions and HL’s ability to

explain human performance.

80

Chapter 4

HL: A hacker-like model of learning

One of the most stunning features of human learning is how rich it is not merely in content

but also in form and objective. Learners, particularly children, are constantly shifting not

only what they are trying to learn, but the reasons for which they are learning, the kinds of

changes they are trying to make to their mental representations, and the means by which they

accomplish those changes. As highlighted in Chapter 2, they might: remove repetition from

an addition algorithm to make it shorter, faster, and less memory intensive (Siegler & Jenkins,

1989); search for a general theory explaining a large body of kinship facts to reduce memory

load and improve generalization (Mollica & Piantadosi, 2019); or discover that the concept of

a largest number and the concept of the successor function are logically incompatible (Cheung

et al., 2017; Chu et al., 2020). People learn entirely new systems of interdefined concepts

(Carey, 1985; Block, 1987) and do so in a way that is driven by hypotheses and goals rather

than blind search (Carey, 2009; Chu et al., 2019), with a sensitivity to what is good in a

hypothesis and what is suboptimal or even wrong (Schulz, 2012a; Chu & Schulz, 2020). Such

richness is interesting because there are extremely simple algorithms guaranteed to discover

optimal hypotheses, e.g. enumerating every possible hypothesis (Gold, 1967; Solomonoff,

1964a). That such a proposal sounds alien as a model of cognition, despite the extreme

computational power of the human brain (Gallistel, 2017; Baum, 2004), reflects something

not only about the complexity of the world that learners are trying to explain but also their

reasons for learning and the sophistication of the machinery they bring to bear in doing so.

This thesis builds on the successful learning as programming paradigm. Learning as

81

programming hypothesizes that cognition occurs in a language of thought (LOT) which

behaves like a programming language. Learning thus becomes programming, and formal

models treat learning as program induction, the construction of programs which explain

observed data. We extend these ideas by treating learning as analogous to a particular

style of programming called hacking, which focuses on the ways in which humans make code

better. Many learning as programming models of learning in the LOT focus on providing an

extremely simple account of learning. They use basic local search mechanisms to discover

simple and accurate programs in a fixed, minimal LOT. By contrast, hacking emphasizes

the richness and diversity of the representations, values, and activities people use to improve

code. It hypothesizes that simple accounts are unlikely to accurately explain the power and

vast scope of human learning.

This chapter introduces HL (Hacker-Like), a computational model of inductive concept

learning in the LOT. HL uses the child as hacker to take steps toward a richer and more

realistic computational account of learning. Each major aspect of its design—its conceptual

representations, learning mechanisms, and objectives—formalizes a well-known pattern from

hacking which is itself chosen to help address some of the cognitive richness of learning

missing in more general models of learning as programming. While not attaining to nearly

the flexibility nor the scope of human learning, HL defines an extensible framework which can

be adapted over time to support the interaction of multiple learning mechanisms, changing

goals, and complex LOTs.

Regarding mental representations, part of the richness of human learning is the devel-

opment of distinct conceptual systems whose basic constituents gain meaning through their

inferential role. These include systems for talking about number, space, time, color, and kin-

ship. The way people develop and use these conceptual systems is similar to the way hackers

develop and use domain-specific languages, programming languages tailored to particular

problem classes. These ideas are implemented in HL through the use of term rewriting sys-

tems. Rather than searching for individual programs in a fixed grammar, the use of term

rewriting allows HL to learn entire LOTs, adding and removing primitives and adapting their

meaning to fit observed data.

Unlike models that rely on a single form of local search, human learning makes use of

82

many constructive learning mechanisms. This gives much of learning the flavor of learning by

thinking (Lombrozo, 2019). Hackers similarly make use of well-defined techniques for revis-

ing code that preserve, and sometimes even enhance, the semantics of the code by applying

hypothesis-driven changes. Rather than searching over millions or billions of programs us-

ing local changes blind to semantics, HL incorporates these ideas by modeling learning as

the iterative application of a toolkit of structured revisions—essentially program-changing

programs—to a comparatively small set of existing hypotheses. In this way, it actually

searches for meta-programs describing how an LOT is constructed rather than searching

directly for the LOT itself. Rather than organizing the search for meta-programs around a

memoryless process like Markov Chain Monte Carlo or neural synthesis, HL uses Monte Carlo

tree search to construct a longterm memory which helps it balance exploration of unknown

meta-programs against exploitation of known meta-programs, all while never proposing the

same meta-program twice.

Finally, people are sensitive to useful structure in suboptimal, even wrong, hypotheses.

They are thus willing to entertain ideas they know are bad overall if they are good in the

right ways and bear faults that can be corrected by future learning. We relate this to the

hacker maxim of avoiding premature optimization. HL implements these ideas by scoring

hypotheses differently when building the search tree than when deciding which, of all the

hypotheses it finds, to use for making predictions. It specifically relaxes its objective during

search to make it more likely to explore seemingly suboptimal revisions that have the right

overall structure. To help with this, HL’s objectives include terms sensitive to the complexity

of the meta-program required to construct a candidate LOT and the well-formedness of the

LOT’s predictions on novel inputs. These terms are used in addition to more standard

terms reflecting the complexity of the LOT itself and its accuracy in predicting known

input/output pairs. HL also naturally supports online learning: it is capable of adapting its

current hypotheses as new information becomes available.

Subsequent sections detail the way HL blends insights about human learning and hacking

in its aspect of its design, including: representation (Section 4.1), learning mechanisms

(Section 4.2), and learning objectives (Section 4.3).

83

4.1 Representation: Term rewriting as a model of mental

representations

This section describes a basic feature of human mental representations, an analogous tech-

nique hackers use for the development of better code, and how HL brings these ideas together

in the representations it uses to model learning. Briefly, humans develop conceptual systems

using symbols which are defined in terms of one another, taking on meaning through their

inferential role. Hackers often do a similar thing through the development of domain-specific

languages, a process HL formalizes by learning term rewriting systems.

4.1.1 Meaning through conceptual role

Humans develop conceptual systems and intuitive theories for reasoning about many do-

mains, including time, space, color, kinship, number, and intuitive biology (Gopnik, 1983;

Murphy & Medin, 1985; Carey, 1985, 2009; Karmiloff-Smith, 1988; Wellman & Gelman,

1992; Gopnik & Meltzoff, 1997; Gopnik & Wellman, 2012; Barner & Baron, 2016). One

interesting feature of these systems is that the key concepts seem to be best defined in terms

of one another rather than in terms of an additional set of more basic parts. Uncle is easy to

describe with respect to parent and sibling, but cumbersome to explain in terms of lambda

functions, S & K combinators, or the function words of English.

This observation has led to a way of thinking about meaning called procedural semantics

(Johnson-Laird, 1977; Woods, 1981), also known as conceptual role semantics (CRS) or

inferential role semantics (Field, 1977; Harman, 1975, 1987, 1982; Loar, 1982; Block, 1987,

1997). The basic idea is that mental representations gain meaning through the relationships

in which they participate with one another. This approach argues that defining a domain’s

concepts in terms of one another, rather than leading to circularity, is actually central to

a coherent theory of meaning. Uncle, for example, gains meaning precisely because of the

way it interacts with other concepts, particularly parent and sibling. Those other concepts

also gain meaning through their relationship to Uncle. It is by learning the network of these

relationships that any one of the concepts comes to mean anything. Block (1987) elaborates

84

on this idea in a discussion of learning physics:

One way to see what the CRS approach comes to is to reflect on how one learned the concepts of
elementary physics, or anyway, how I did. When I took my first physics course, I was confronted
with quite a bit of new terminology all at once: ‘energy’, ‘momentum’, ‘acceleration’, ‘mass’,
and the like. . . I never learned any definitions of these new terms in terms I already knew.
Rather, what I learned was how to use the new terminology—I learned certain relations among
the new terms themselves (e.g., the relation between force and mass, neither of which can be
defined in old terms), some relations between the new terms and the old terms, and, most
importantly, how to generate the right numbers in answers to questions posed in the new
terminology.

Terms like mass, acceleration, force, energy, and velocity are all defined in terms of one

another. What is mass? Mass is the thing, 𝑚, such that 𝑓 = 𝑚𝑎, 𝑒 = 𝑚𝑣2/2, 𝑝 = 𝑚𝑣, and

so on. The same is true for any of these terms: they are defined by these relationships. This

specific set of symbols and their relationships captures a particular way of carving up the

world, with its own vocabulary and internal logic.

The argument is not necessarily that it is impossible to define a system of concepts by

composing them out of more basic parts or translating them into the language of some

other conceptual system. It is, instead, that doing so is unlikely to be explanatory. Fodor

(1975), for example, begins his philosophical defense of the LOT by developing an argument

for the role of cognitive science apart from neuroscience or physics. The argument centers

on the idea that each discipline has a distinctly domain-specific repertoire of concepts best

defined by their domain-specific interactions rather than by reducing them to some set of

“more primitive” concepts. The concepts of cognitive science, he argues, are best described in

terms of one another, rather than by reduction to neuroscience or physics. Reducing them to

physics, for example, is unlikely to add anything to a good theory of cognitive science. It is

instead much more likely to confuse and complicate our understanding, because the concepts

which are important in cognitive science are unlikely to map neatly onto categories which

are important in physics. The two are instead likely to be at odds with one another, which

is precisely why we have two domains of study. The unique ways in which each discipline

carves up the world is what sets it apart from the others. Considered in context with later

arguments supporting the core of the LOT hypothesis, this argument suggests the need for

a variety of semi-independent LOTs tuned to specific domains of thought. That is, humans

develop conceptual systems and intuitive theories as tools for organizing thought, because

85

they better capture the essential dynamics of a domain than would be possible with a set of

domain-general concepts1

The use of conceptual systems whose constituents are defined by conceptual role helps to

explain why certain concepts seem to be learned together as systems. These systems identify

concepts which are tightly interrelated. They are most naturally expressed in terms of one

another rather than in terms of other concepts. For any one part of the system to work, all

the concepts and their interrelations that define the system are necessary. The concepts and

interrelations of other systems, however, are largely irrelevant. This also help to explain why

translating concepts from one domain to another, for example in transfer learning, can be so

difficult (Gick & Holyoak, 1980, 1983). If cognition used a single general-purpose LOT rather

than a set of LOTs tuned to specific domains, transfer learning should be easy. All concepts

would be built from the same basic parts, so transfer learning would be the default. That

things are otherwise suggests that some significant effort is required to make the ideas of one

conceptual system available in another, perhaps by translating them from one language to

another.

4.1.2 The value of domain-specific languages

Hacking poses a fundamental tension. On one hand, a hacker wants a strong inductive bias—

i.e. she wants her language to make it as easy as possible for her to write the program she is

currently working on. On the other hand, her goals are constantly changing. The program

she is working on now may look completely different tomorrow, or in a week, or a month.

She wants as much freedom as possible to let her program evolve as she learns, discovers

new structure, and improves her code. In sum, she needs to balance the effort required to

improve her code now against the effort required to improve her code in the future. She

needs to balance the inductive bias she wants today against the inductive bias she will want

tomorrow.

Hackers frequently resolve this tension in the following way. First, they recognize that

every programming language is itself just a program. It is a program that takes code as

1Others have similarly used the notion of multiple cognitive languages to help separate sensation, per-
ception, and cognition (Macnamara & Reyes, 1994; Burge, 2010).

86

input and produces other2 code as output. In order to have the language she wants today

and the language she wants tomorrow, a hacker often first develops a special language which

makes it trivial to write code achieving her current goals. As her goals change, she iteratively

adapts this specialized language, taking care that the language always makes it as easy as

possible to describe the solution to her current problem. To do so, she might implement her

specialized language in a second language which is slightly less specialized but nonetheless

somewhat tuned to the domains she thinks are most relevant to her problem. This second

language might itself be implemented in an even less specialized third language and so on. In

essence, she hierarchically factors the problem until the solution is nearly trivial to express.

Computer science is full of these domain-specific languages (DSLs; Fowler, 2010). HTML,

for example, is a DSL for describing web pages (W3C, 2017), STAN is a DSL for describing

and performing inference in probabilistic models (Carpenter et al., 2017), and SQL is a DSL

for interacting with relational databases (ISO, 2016). Library systems in domain-general

languages are also often used to provide domain-specific extensions to the language. In each

case, the syntax and semantics of the language are tailored to make certain kinds of tasks

easy, while other kinds of tasks may be impossible. HTML is excellent for describing the

content of webpages, for example, but bad for describing how they should look, much less

for expressing probabilistic models or database queries.

The use of DSLs in computer science is similar to the development of conceptual systems

in psychology. DSLs, like conceptual systems, are tailored so that their primitives directly

express the dynamics of their target domain and frequently expose only the relevant concepts,

rather than appearing to ground out in any sort of external primitives. DSLs are also like

conceptual systems in that the programs of a DSL gain meaning through the way in which

the program evaluates when executed. Essentially, the language defines a set of relationships

between programs, and evaluation iteratively transforms an input program according to

these relationships to produce an output. DSLs are thus organized similarly to conceptual

systems, defining a set of composable primitives that gain meaning through the complex

relationships in which they participate.

2Unless, of course, the program is a quine, a special class of programs which return their own source code
as output (Hofstadter, 1979).

87

c1 (heads-in-tail)
(c1 [7, 2, 7, 7]) = 2
(c1 [1]) = 0
(c1 []) = 0
(c1 [2, 5, 9, 2]) = 1
(c1 [5, 5, 5]) = 2

c2 (fst/head)
(c2 [7, 2, 7, 7]) = 7
(c2 [1]) = 1
(c2 [1, 2, 3]) = 1
(c2 [2, 5, 9, 2]) = 2
(c2 [5, 5, 5]) = 5

c3, (snd/tail)
(c3 [7, 2, 7, 7]) = [2, 7, 7]
(c3 [1]) = []
(c3 [1, 2, 3]) = [2, 3]
(c3 [2, 5, 9, 2]) = [5, 9, 2]
(c3 [5, 5, 5]) = [5, 5]

c4, (count)
(c4 7 [7, 2, 7, 7]) = 3
(c4 1 [1]) = 1
(c4 8 []) = 0
(c4 2 [2, 5, 9, 2]) = 2
(c4 5 [5, 5, 5]) = 3

Figure 4-1: Example data for a list function problem. c2 takes a list and returns the first
element. c3 takes a list and returns all but the first element. c4 takes an element and a list
and returns the number of times the element appears in the list. c1 operates like c4 but
counts the number of times the first item in a list appears in the rest of the list.

To understand how valuable the DSL approach can be, consider again the concepts 𝑐1–𝑐4

from Chapter 1. How might one represent that system of concepts? One way to do so is

example by example (Figure 4-1). While accurately capturing past experience, that approach

is problematic, because it has no ability to generalize. Without any ability to predict how the

concepts behave for novel inputs, every single example needs to be memorized. Because the

set of numerical lists is infinite, there is no possible way to store all the necessary examples

in a finite mind. Even very simple concepts like 𝑐2 cannot be learned.

Instead of memorizing, it would be better to find general descriptions of 𝑐1–𝑐4. Perhaps

the simplest way to do this is to frame concept learning as a search for expressions in an LOT.

To learn a concept like 𝑐1 means finding some expression in this LOT which behaves like 𝑐1,

giving the same inputs and outputs for all the provided examples. Repeating the process

for each concept eventually provides a definition for each new concept. Assume the LOT is

computationally universal, so that it can encode not only 𝑐1–𝑐4 but arbitrary knowledge3. We

use a fairly minimal language here, the SK combinatory calculus, extended with a symbol, E

for computing syntactic equality. The exact dynamics of S and K are unimportant here save

that they are Turing-complete. We could adopt more complex primitives, but given enough

to learn, any fixed set of primitives will seem similarly minimal. Describing 𝑐1–𝑐4 in this way

is possible4, but tedious (Figure 4-2).

3This discussion considers several different representations for learning. Because it assumes from the
outset that each is Turing-complete, any one of them could learn to model the dynamics of any other by
discovering the necessary computational machinery and making it available as part of the LOT. The point at
issue here, however, is how various these pieces of computational machinery change the dynamics of learning
and make certain kinds of learning easier or harder.

4Because each of the representations in this example are computationally universal, there are ways to
encode natural numbers and basic arithmetic (e.g. +, −, ×, /) in them using, for example, Church numerals
(Barendregt et al., 1984). Showing how to do so is outside the scope of the example, so assume that these
abilities are provided.

88

Fixed primitives
(S a b c) = ((a c) (b c))
(K a b) = a
(E x x a b) = a
(E x y a b) = b

Target concepts
Empty = (((S ((S (K ((S (K S)) K))) S)) (K K)) ((((S ((S (K ((S (K S)) K))) S)) (K K)) ((S K) K)) K) K)
Cons = (((S (K S)) K) (((S (K S)) K) (((S ((S (K ((S (K S)) K))) S)) (K K)) ((((S ((S (K ((S (K S)) K))) S)) (K K))

((S K) K)) (K ((S K) K))))) (((S (K S)) K) ((S ((S (K ((S (K S)) K))) S)) (K K)) (((S ((S (K ((S (K S)) K))) S)) (K
K)) ((S K) K))))

→˓
→˓
c2 = (((S (K S)) K) (S ((S K) K) (K K)) (S ((S K) K) (K (S K))))
c3 = (((S (K S)) K) (S ((S K) K) (K (S K))) (S ((S K) K) (K (S K))))
c4 = (((S (K ((S (K ((S (S ((S ((S K) K)) K))) (S ((S K) K))))) S))) K) (((((S (K S)) K) ((S (K S)) K)) ((((S (K S)) K)

((S (K S)) K)) S)) ((((S (K S)) K) ((S ((S (K ((S (K S)) K))) S)) (K K))) E (((S ((S (K ((S (K S)) K))) S)) (K K))
((((S ((S (K ((S (K S)) K))) S)) (K K)) ((S K) K)) K) K) 0) (((((S (K S)) K) ((S (K S)) K)) ((((S (K S)) K) S) (((S
(K S)) K) S))) (((((S (K S)) K) (((S (K S)) K) (((S (K S)) K) ((S ((S (K ((S (K S)) K))) S)) (K K))))) (((S (K S))
K) (((S (K S)) K) (((S (K S)) K) (((S (K S)) K) ((S ((S (K ((S (K S)) K))) S)) (K K))))) ((((S (K S)) K) (((S (K
S)) K) ((S ((S (K ((S (K S)) K))) S)) (K K)))) (((S (K S)) K) (((S (K S)) K) (((S (K S)) K) ((S ((S (K ((S (K S))
K))) S)) (K K))))) ((((S (K S)) K) (((S (K S)) K) ((S ((S (K ((S (K S)) K))) S)) (K K)))) ((S (K S)) K))))) E (((S
(K S)) K) (S ((S K) K) (K K)) (S ((S K) K) (K (S K)))) (+ 1) ((S K) K)) ((((S ((S (K ((S (K S)) K))) S)) (K K))
(((S (K S)) K) ((S ((S (K ((S (K S)) K))) S)) (K K)) (((S (K S)) K) ((S (K S)) K)))) (((S (K S)) K) (S ((S K) K) (K
(S K))) (S ((S K) K) (K (S K))))))))

→˓
→˓
→˓
→˓
→˓
→˓
→˓
→˓
→˓
c1 = (S ((((S (K S)) K) ((S ((S (K ((S (K S)) K))) S)) (K K))) E (((S ((S (K ((S (K S)) K))) S)) (K K)) ((((S ((S (K

((S (K S)) K))) S)) (K K)) ((S K) K)) K) K) 0) ((((S (K S)) K) (((S (K S)) K) S) ((S (K S)) K)) (((S (K ((S (K ((S
(S ((S ((S K) K)) K))) (S ((S K) K))))) S))) K) (((((S (K S)) K) ((S (K S)) K)) ((((S (K S)) K) ((S (K S)) K)) S))
((((S (K S)) K) ((S ((S (K ((S (K S)) K))) S)) (K K))) E (((S ((S (K ((S (K S)) K))) S)) (K K)) ((((S ((S (K ((S (K
S)) K))) S)) (K K)) ((S K) K)) K) K) 0) (((((S (K S)) K) ((S (K S)) K)) ((((S (K S)) K) S) (((S (K S)) K) S)))
(((((S (K S)) K) (((S (K S)) K) (((S (K S)) K) ((S ((S (K ((S (K S)) K))) S)) (K K))))) (((S (K S)) K) (((S (K S))
K) (((S (K S)) K) (((S (K S)) K) ((S ((S (K ((S (K S)) K))) S)) (K K))))) ((((S (K S)) K) (((S (K S)) K) ((S ((S (K
((S (K S)) K))) S)) (K K)))) (((S (K S)) K) (((S (K S)) K) (((S (K S)) K) ((S ((S (K ((S (K S)) K))) S)) (K K)))))
((((S (K S)) K) (((S (K S)) K) ((S ((S (K ((S (K S)) K))) S)) (K K)))) ((S (K S)) K))))) E (((S (K S)) K) (S ((S K)
K) (K K)) (S ((S K) K) (K (S K)))) (+ 1) ((S K) K)) ((((S ((S (K ((S (K S)) K))) S)) (K K)) (((S (K S)) K) ((S ((S
(K ((S (K S)) K))) S)) (K K)) (((S (K S)) K) ((S (K S)) K)))) (((S (K S)) K) (S ((S K) K) (K (S K))) (S ((S K) K)
(K (S K)))))))) (((S (K S)) K) (S ((S K) K) (K K)) (S ((S K) K) (K (S K)))) (((S (K S)) K) (S ((S K) K) (K (S K)))
(S ((S K) K) (K (S K))))))

→˓
→˓
→˓
→˓
→˓
→˓
→˓
→˓
→˓
→˓
→˓
→˓

Figure 4-2: A language which could be learned from Figure 4-1 using an approach in which
each concept is described in terms of a fixed set of primitives. Here, the primitives include S
and K from combinatory logic, E for establishing equality, and various numerical primitives.

This approach would eventually require less memory than memorizing input/output pairs

for each concept, but it would take many more examples than those shown above. It also

makes an oddly limited use of composition. Because each concept is learned independently

and without updating the LOT, there is no curriculum-based learning. Concepts learned in

the past can be referred to and used, but only when used in isolation. They cannot, however,

be composed to make future learning easier. This approach is then a sort of sub-Fodorian

approach to the LOT in that only the innate primitives can be composed. Because this set of

compositional primitives is fixed, learning new concepts quickly becomes hard: things which

should be easy become difficult, and things which should be difficult become intractable. This

effect is exaggerated when trying to uniquely encode a large number of concepts using a small

89

Fixed primitives
(S a b c) = ((a c) (b c))
(K a b) = a
(E x x a b) = a
(E x y a b) = b

Target concepts
Empty = (Pair True True)
Cons = ((B D D) Pair False Pair)
c2 = (B Fst Snd)
c3 = (B Snd Snd)
c4 = (Y ((D (D S)) (C* E Empty 0) ((D (F F)) ((C*** (B C***

(C** C*** (C** B)))) E c2 (+ 1) I) ((C (B C D)) c3))))→˓
c1 = (S (C* E Empty 0) ((B F B) c4 c2 c3))

Learned concepts
I = ((S K) K)
A = (S I)
Y = ((S (K ((S (K ((S (S (A K))) A))) S))) K)
B = ((S (K S)) K)
C = ((S ((S (K ((S (K S)) K))) S)) (K K))
C* = (B C)
C** = (B C*)
C*** = (B C**)
D = (B B)
F = (B S)
T = (C I)
True = K
False = (K I)
Pair = (C* T)
Fst = (A (K K))
Snd = (A (K (S K)))

Figure 4-3: A language which could be learned from Figure 4-1 using an intermediate ap-
proach in which new concepts can be learned but must resolve to a fixed set of primitives.

set of primitives. Oddly enough, this is perhaps the most common approach for program-

induction-based models of learning in the LOT (e.g. Goodman, Tenenbaum, Feldman, et al.,

2008; Piantadosi et al., 2012, 2016; Piantadosi, 2016; Kemp & Tenenbaum, 2008), largely

because most models only ever learn a single concept at a time5.

One obvious way to improve on this approach is to allow the iterative learning of in-

termediate concepts (Dechter et al., 2013). The scenario is otherwise the same as before,

but once a concept has been learned, it is now considered a compositional part of the LOT.

Moreover, concepts can be added which are not specifically designated in the input data but

instead capture useful latent structure. Every concept ultimately resolves to the innate set

of primitives, but learned concepts provide a shorthand for referring to certain combinations

of those primitives and can themselves be combined. This is a decidedly more compositional

approach, where harder concepts can be defined in terms of easier and previously learned

concepts (Figure 4-3). It is also perhaps the closest to Fodor’s discussion of the LOT (Fodor,

1975; Fodor, 1980). The fundamental basis on which the LOT rests never changes, each

new concept represents a specific combination of primitives from this basis, and the ultimate

set of possible concepts—the possible compositions of LOT primitives—is always the same.

5Some readers might see this as a largely technical point. Many models are only designed to learn a single
concept, so the question of whether that concept is added to the lexicon or not might seem irrelevant. It is,
however, decidedly nontrivial to create a model which can learn multiple concepts in a curriculum-based way
and identify useful latent structure while doing so. Moreover, people, especially children, are constantly faced
with multi-task learning scenarios. It thus seems appropriate to distinguish models which do not address
these issues from those which have made a serious effort to explicitly model them.

90

Any apparent change in the cognition of the learner merely reflects the discovery of more

and more complex combinations of primitives.

Allowing new concepts certainly provides a more compact description of 𝑐1–𝑐4 than mem-

orization or search in a fixed language. None of these three approaches, however, allows vari-

able binding outside the set of primitives. Named variables are useful, because they allow

learners to more directly express concepts which abstract over portions of their compositional

structure. The result is that a great deal of each definition in Figure 4-3 is spent reinventing

ad hoc parts of variable binding on a per-concept basis, shuttling and routing arguments

to the proper places. This makes things which feel intuitively easy to a human extremely

difficult to describe. It also ignores work showing that LOTs which permit variable binding

through the use of quantifiers provide a better explanation of Boolean set inclusion concepts

than LOTs lacking variable binding (Piantadosi et al., 2016). To encode something as simple

as

(f x y g) = (g x y)
means learning something as complex as

f = ((((S (K S)) K) ((S ((S (K ((S (K S)) K))) S)) (K K)))
(((S ((S (K ((S (K S)) K))) S)) (K K)) ((S K) K)))!

It is possible to simplify that process by adding variable binding to the LOT. This does

not change the theoretical expressiveness of an already Turing-complete LOT, but it does

make some kinds of concepts easier to describe, namely any concept which can be modified

by arguments or parameters. In a sense, this approach is slightly super-Fodorian in that a

named piece of the LOT may no longer represent a single composition of primitives. Variable

binding makes it possible to describe concepts which instead specify a family of compositions,

namely those that can be created by substituting values for each variable. Several models

take this approach, using an LOT in which variable binding is freely available (Rule et al.,

2015; Ellis et al., 2018; Ellis et al., 2020), and such a model can describe 𝑐1–𝑐4 much more

compactly6 (Figure 4-4).

6The language in Figure 4-4 both allows variable binding and uses the variable x multiple times in the
definition of eq to enforce equality. Restricting rules so the left-hand side uses each variable only once
approximates an untyped lambda calculus. The problem from Figure 4-1 can no longer be solved as given,
as there is no way to judge equality between terms from within the language (Jay & Vergara, 2017). A
modified problem operating over a subset of terms (e.g. Church numerals) can be solved but is sufficiently
different to confuse the example being made here.

91

Fixed primitives
(S a b c) = ((a c) (b c))
(K a b) = a
(E x x a b) = a
(E x y a b) = b

Learned concepts
(True x y) = x
(False x y) = y
(Pair x y f) = (f x y)
(Fst x) = (x True)
(Snd x) = (x False)
Empty = (Cons True True)
(Cons x y) = (Pair False (Pair x y))
(c2 x) = (Fst (Snd x))
(c3 x) = (Snd (Snd x))
(c4 x y) = E y Empty

0
(E x (c2 y)

(+ 1 (c4 x (c3 y)))
(c4 x (c3 y)))

(c1 x) = E x Empty 0 (c4 (c2 x) (c3 x))

Figure 4-4: A language which could be learned from Figure 4-1 using an intermediate ap-
proach in which new concepts are introduced as needed, but all concepts are treated like
named functions and each argument must be a variable.

Variable binding helps to provide a significantly more direct explanation of the data from

Figure 4-1. A great deal of what remains is dedicated to constructing and destructing lists

in each place they are used. That is, when variables on the left-hand side of a conceptual

relation can only be used to describe entire concepts, a great deal of work has to be done on

the right-hand side to manipulate those concepts and retrieve the desired sub-parts. This

could be fixed by allowing the left-hand side of rules to use variables not just for entire

arguments, but for specific parts of arguments. In that case, the left-hand side of each rule

acts like a complex pattern, some parts of which must remain constant, and other parts of

which can vary and are assigned to variables. This provides fine-grained control over exactly

what kinds of structures a concept abstracts over. It can in this way be interpreted as a

powerful way to define compositions over a fixed set of primitives.

If, however, all symbols are defined using these complex patterns, then there is no bottom,

no fixed set of primitives whose behavior is defined apart from the other symbols. Each

pattern is a composition of symbols and variables which refers to another composition of

symbols and variables. Portions of that composition might refer to other compositions, and so

on. In that case, these expressions, rather than defining individual concepts, or parameterized

families of concepts, describe complex relationships between multiple concepts, namely all

the symbols involved in the pattern and the composition to which it refers. The semantics

then emerge as the sum total of these relationships, rather than reducing to a small set of

primitive behaviors.

92

[x y] = (Cons x y)
(c2 [x y]) = x
(c3 [x y]) = y
(c4 z Empty) = 0
(c4 z [z y]) = (+ 1 (c4 z y))
(c4 z [x y]) = (c4 z y)
(c1 Empty) = 0
(c1 [x y]) = (c4 x y)

Figure 4-5: A language which could be learned from Figure 4-1 when allowing reuse, variable
binding, primitive addition and removal, and pattern-matching. Note the use of patterns for
pulling lists into parts.

At this point, it makes sense to allow primitives to be added and removed at will, as

symbols no longer directly ground out in compositions of primitive behavior. They simply

describe relationships between symbols, and there is no reason to prevent symbols from

being added or removed. The learned language can thus become an increasingly finely-

tuned domain-specific conceptual system as symbols are added, removed, or redefined to

better match observed data.

Expressing 𝑐1–𝑐4 that way provides a solution perfectly tailored to the problem (Figure

4-5). Concepts like 𝑐1 rely compositionally on previously learned concepts like 𝑐4 and the

patterns described by 𝑐2 and 𝑐3. More generally, the overall behavior of the LOT is fit to the

data to be explained: all extraneous dynamics have been removed, and those which remain

directly contribute to explaining the observations.

The progression above can be seen as lying on a spectrum describing various restrictions

on how the LOT can be updated7. In the first, new symbols can only be added when they

are defined strictly in terms of innate primitives. It thus maintains a strict divide between

what is innate and what is learned. The second blurs this distinction in that new symbols

can be defined in terms of both primitives and previously learned symbols. Each newly

named composition is added to the LOT, but each name also refers to only a single, specific

composition. The third system loosens this restriction by adding variable binding, which

makes it simple to add symbols which take arguments. These new symbols refer not to a

single composition, but to a parameterizable family of compositions. All of these approaches,

7There are even more extreme points on this spectrum. Some languages might assume that it was im-
possible to add new symbols at all, or even to compose them. These would be radically nativist approaches
that seem decidedly untenable given our knowledge about human learning and development. Other lan-
guages might use the complex patterns of the fourth system but allow those patterns to nondeterministically
reference multiple distinct compositions of other symbols.

93

however assume that the innate primitives cannot be removed or redefined, and new symbols

are ultimately defined in terms of basic primitives. They are thus all closely related to Fodor’s

notion of learning in the LOT. Learning a new concept in all three boils down to finding a

composition of basic primitives which explains the observed data. The fourth system takes

a different approach. It allows for symbols to be added or removed at any time. Moreover,

meaning does not necessarily ground out in the behavior of a fixed set of primitives. It is

possible to express that kind of LOT, but more generally, meaning comes from the full set

of complex relationships in which all symbols participate.

Learning in this fourth system is thus importantly different from the Fodorian view.

Instead of composing a fixed set of basic dynamics in such a way as to explain the observed

data, it changes the basic dynamics to contain precisely those needed to most simply explain

the data. The entire language can be adapted to make the data as easy to explain as possible.

Learning is no longer restricted to defining a symbol as compositions of existing symbols,

though this can be done when it provides the simplest explanation. In other cases, however,

learning is about finding the best language, the simplest set of objects and their relationships,

for explaining the data. In essence, learning produces a DSL whose domain is the observed

data.

As the LOT grows to explain more and more observations of the world, the total dynamics

of the entire LOT shift less and less after each learning episode. An individual conceptual

system, however, might change radically: adding symbols, removing symbols, or redefining

relationships between those that remain. The DSL approach thus has important connections

with the psychological problem of conceptual change (Barner & Baron, 2016). Conceptual

change is the idea that intuitive and formal theories can change radically; later theories

may ultimately become completely incommensurable with older theories of the same domain

(Kuhn, 1962; Feyerabend, 1962). Despite philosophical arguments as to the impossibility

of conceptual change (Fodor, 1980), conceptual changes and incommensurabilities are well

documented in developmental psychology for domains like biology, the natural and rational

numbers, and for concepts of weight and density (Carey, 2009, 1985; Carey & Spelke, 1994;

Gopnik, 1983). They are also well-known in the history of formal science, including the

development of modern theories of heat and heliocentrism.

94

Figure |Σ| |𝑅| 𝑆(𝑅) DL((Σ, 𝑅))

4-1 8 20 346 374
4-2 10 10 1,681 1,701
4-3 26 26 256 308
4-4 15 15 172 202
4-5 8 8 68 84

Table 4.1: A comparison of the languages in Figures 4-2–5 based on their description lengths
as TRSs. |Σ| is the number of required symbols, |𝑅| is the number of rules, S(𝑅) is the
total number of subterms across all rules (i.e. the sum over the description length of each
rule), and DL((Σ, 𝑅)) gives the total description length of the entire TRS. The figures do
not include the assumed background knowledge of numbers and arithmetic operators, which
remains constant across all cases.

The DSL approach provides a formal framework for modeling this process. Newly added

symbols are initially void of meaning and act instead as placeholders whose meaning is

constrained as they are incorporated into more and more of the language’s rules. Even as the

meaning of these placeholders is contrained by their relationship to existing concepts, those

existing concepts are simultaneously constrained by their new relations to the placeholder. As

a symbol is used in more rules, its meaning becomes more tightly constrained. As it is used in

fewer rules, it loses meaning, and may eventually become meaningless if its becomes entirely

unused. The result is a formal description of how incommensurabilities might develop.

The discussion above demonstrates the computational value of treating learning as the

development of a DSL. The impact for this particular example is summarized in Table 4.1,

but the point holds more generally: tailoring syntax and semantics in this way can often lead

to a hundred-fold or even thousand-fold reduction in the size of the program needed to encode

a particular computation (Ohshima et al., 2012). Moreover, there are strong correspondences

between the operation of intuitive theories in psychology and domain-specific languages in

computer science (Table 4.2).

Despite its plausibility, existing models of concept learning are poorly suited to test this

domain-specific LOT hypothesis. First, most models are tailored to a single domain, such as

motor programs for hand-written characters (Lake et al., 2015) or Boolean concepts for sets

of colored shapes (Piantadosi et al., 2016), and do not have facilities for extending themselves

to explain other domains. They thus require manually designed conceptual primitives. This

95

Intuitive Theories Domain-Specific Languages

explain & predict explain & simulate domains (fluids, protein folding)
simplify reality define interfaces to domain algorithms & structures
interact with data read, create, transform, destroy, and save data
have external structure interact with other libraries
have internal structure are sets of compositional functions
are learned piecemeal are implemented iteratively
may be implicit/explicit selectively import & export
are internally holistic cannot usually be copied piecemeal
are externally modular explicitly list dependencies on other libraries

Table 4.2: Comparing intuitive theories and DSLs, inspired by (Murphy & Medin, 1985).

is problematic because it suggests the need for a large set of primitives to explain the wide

variety of human learning. The primitives also become more complex and thus typically

require more detailed psychological justification. This justification, while necessary in the

long run, can slow modeling research, as many human core cognitive resources are still poorly

understood relative to what is needed for computational modeling. Comparing multiple sets

of potential primitives developed this way is also costly for modelers and severely limits

the space of considered hypotheses (Piantadosi et al., 2016). Second, models which operate

across multiple domains typically assume a universal and often minimal set of primitives such

as those found in various combinatory logics or lambda calculi (Piantadosi, 2016; Dechter

et al., 2013; Ellis et al., 2020). This option is attractive because it requires only a small

number of simple concepts; in many existing learning algorithms, each additional primitive

slows learning significantly. Veering too far into minimalism, however, can ignore primitives

for which there is strong empirical evidence and introduce primitives for which there is no

meaningful evidence. It can also slow learning by making each learned concept unnecessarily

difficult to describe. For large sets of concepts, many of the concepts grow to be complex

and inefficient to evaluate. There is no way to balance the number of true primitives against

the complexity of the domain. Third, very few models are organized so that they can define

intermediate concepts in terms of which other concepts can be defined. Those models which

do permit intermediate concepts often sharply limit the number which can be learned (Rule

et al., 2015), or force intermediate concepts to resolve to fixed primitives (Dechter et al.,

2013; Ellis et al., 2020).

96

The root of these problems, again, is relying on a fixed set of conceptual primitives in

terms of which all concepts must eventually be defined. If those primitives are not well

suited to the domain, that means that domain-specific concepts become complex to define

and inefficient to use. Existing models of grammar induction are affected by a related problem

in which they can easily express only a limited set of computational grammars (e.g. graph

structures as in Kemp and Tenenbaum, 2008, or string concatenations as in Rule et al., 2015).

Being able to add or remove primitive concepts as needed to tailor-fit a domain-specific LOT

requires a new approach. Rather than fixing the language (i.e. fixing a set of conceptual

primitives), or adopting a meta-language for describing one class of domains (e.g. strings,

graphs), the model should fix a meta-language from which any DSL could be built. Individual

expressions in this meta-language would themselves describe a complete language—syntax

and semantics—that could be evaluated as an explanation of data. This approach would

allow models to develop the set of primitives and rules of interaction best suited to their

observed data instead of building from fixed primitives and the limited interactions they

allow. The next section describes how HL implements these ideas using a formalism called

term rewriting.

4.1.3 Term rewriting

Rather than leading to an infinite regress, the DSL approach favors the adoption of an initial

language which is itself good for implementing other languages. This requires stepping back

from fixed sets of primitives and behaviors—as are common in formalisms like combinatory

logic (Schönfinkel, 1924; Curry, 1930), lambda calculus (Church, 1932), Turing Machines

(Turing, 1936), context free grammars (Sipser, 2012), Post canonical systems (Post, 1943),

and others (Minsky, 1967)—to study the class of systems to which they belong and the

ways in which changing the primitives and their interactions affects the behavior of the

system. This is the approach taken in the study of Term Rewriting Systems (TRSs)8.

Term rewriting suits the purposes of theoretical computer science well in that it permits

8This is actually the approach of rewriting more broadly. Rewriting is a branch of computer science
studying how discrete objects evolve over time using Abstract Rewriting Systems. Abstract Rewriting
Systems exist to describe rewriting not only for terms but also graphs, strings, concurrent system traces,
and other structures (Bezem et al., 2003).

97

abstracting over individual languages to draw general conclusions about the behavior of

entire classes of languages. It suits the purposes of computational cognitive modeling in that

it provides a uniform mechanism for defining an unboundedly large set of potentially Turing-

complete programming languages, each serving as a model LOT. After a brief tutorial on

term rewriting based on discussions in Baader and Nipkow (1999) and Bezem et al. (2003),

we describe how HL uses term rewriting as a model of conceptual representations.

TRSs formalize the intuition that symbolic forms of computation like programming lan-

guages boil down to trees of symbols and rules for how those trees evolve, evaluate, or

compute. They form the explicit basis for many functional programming languages, and,

because both combinatory logic and lambda calculus are TRSs, the implicit basis for many

others. While it has previously appeared in inductive learning systems (Rao, 2004; Hofmann

et al., 2009), term rewriting is less common than alternative formalisms like first-order logic,

combinatory logic, or lambda calculus. Defining a TRS formally requires several preliminary

definitions, given here and illustrated with SK combinatory logic and Peano arithmetic.

A signature, Σ, is a set where each element, 𝑠 ∈ Σ, is a symbol with some arity, 𝑛 ≥ 0.

The signature for SK combinatory logic uses one symbol with arity 2, ·, and two symbols

with arity 0, 𝑆 and 𝐾:

Σ𝐶𝐿 ≡ {·/2, 𝑆/0, 𝐾/0}

The signature for Peano arithmetic uses one symbol with arity 2, +, one symbol with arity

1, 𝑆, and one symbol with arity 0, 0:

Σ𝑃𝐴 ≡ {+/2, 𝑆/1, 0/0}

A term is a tree structure composed of atoms. An atom is either a variable or an operator.

A variable represents an entire arbitrary term and thus has no arity. An operator is a symbol

from Σ. A constant is an operator of arity 0. If 𝑋 is a set of variables, then the set of terms

given Σ and 𝑋, 𝑇 (Σ, 𝑋), is the set of expressions that can be composed from 𝑋 and Σ while

respecting the arity of the operators9:

9Technically, the definition given here is for first-order terms. Higher-order term rewriting systems have

98

𝑇 (Σ, 𝑋) ≡ 𝑋 ∪ {𝑓(𝑡1, . . . , 𝑡𝑛) | 𝑓 ∈ Σ, arity(𝑓) = 𝑛, 𝑡1, . . . , 𝑡𝑛 ∈ 𝑇 (Σ, 𝑋)}

If 𝑋 ≡ {𝑥, 𝑦} and · is written using infix notation:

{𝑥, 𝑦, 𝑆, 𝐾} ⊂ 𝑇 (Σ𝐶𝐿, 𝑋)

{𝑥, 𝑦, 0} ⊂ 𝑇 (Σ𝑃𝐴, 𝑋)

(𝑥 · 𝑦) · 𝑧 ∈ 𝑇 (Σ𝐶𝐿, 𝑋)

+(𝑆(𝑆(0)) + (𝑆(0) 𝑥)) ∈ 𝑇 (Σ𝑃𝐴, 𝑋)

· /∈ 𝑇 (Σ𝐶𝐿, 𝑋) (· has arity 2)

{𝑆, +} ̸⊂ 𝑇 (Σ𝑃𝐴, 𝑋) (𝑆 has arity 1, + has arity 2)

+(𝐾 0) /∈ 𝑇 (Σ𝑃𝐴, 𝑋) (𝐾 /∈ Σ𝑃𝐴)

𝑥(𝐾) /∈ 𝑇 (Σ𝐶𝐿, 𝑋) (variables are complete terms)

+(0) /∈ 𝑇 (Σ𝑃𝐴, 𝑋) (+ has arity 2)

Assuming that 𝑋 is some unboundedly large set of variables, the set of terms is thus entirely

defined by Σ and the rules for composing elements of 𝑋 and Σ. Knowing Σ thus defines the

syntax of the TRS, the set of terms about which it is concerned. If the TRS is viewed as

defining a programming language, Σ defines the set of programs in that language. On its

own, however, Σ provides no information about how these programs behave, how programs

are transformed step-by-step to perform computations. That is, Σ provides syntax, but it

lacks a meaningful semantics.

The semantics of a TRS come from its rewriting rules, each of which describes a specific

way of transforming an input program into an output program. An identity is a pair (𝑠, 𝑡) ∈

𝑇 (Σ, 𝑋) × 𝑇 (Σ, 𝑋), commonly written as 𝑠 ≈ 𝑡. A rewrite rule is an identity where 𝑠 /∈ 𝑋

(i.e. 𝑠 is not a variable) and Var(𝑠) ⊇ Var(𝑡) (i.e. no terms need be invented to complete the

rewrite). A term rewriting system, 𝐻 ≡ (Σ, 𝑅), is an ordered pair containing a signature

and a sequence of rewrite rules, 𝑅 ≡ ⟨𝑅1, 𝑅2, . . . , 𝑅𝑛⟩. For SK combinatory logic:

been studied, and place appropriately different constraints on what constitutes a term (Bezem et al., 2003;
Van Raamsdonk, 1999)

99

𝑅𝐶𝐿 ≡ ⟨((𝑆 · 𝑥) · 𝑦) · 𝑧 ≈ (𝑥 · 𝑧) · (𝑦 · 𝑧),

(𝐾 · 𝑥) · 𝑦 ≈ 𝑥⟩

HCL ≡ (Σ𝐶𝐿, 𝑅𝐶𝐿)

And, for Peano arithmetic:

𝑅𝑃𝐴 ≡ ⟨ + (0 𝑥) ≈ 𝑥,

+ (𝑆(𝑥) 𝑦) ≈ 𝑆(+(𝑥 𝑦))⟩

HPA ≡ (Σ𝑃𝐴, 𝑅𝑃𝐴)

Each set of rewrite rules, 𝑅, defines a rewrite relation, →𝑅, describing how arbitrary terms

in 𝑇 (Σ, 𝑋) may be rewritten. According to →𝑅, a term, 𝑠, can be rewritten to another term,

𝑡, or 𝑠→𝑅 𝑡, if there is a rule 𝑙 ≈ 𝑟 ∈ 𝑅, such that 𝑠 can be matched with 𝑙, written 𝑙 ↦→ 𝑠, to

produce a substitution, 𝜎. Intuitively, matching is a way of assigning a value to each variable

in 𝑙 such that replacing the variable with its value transforms 𝑙 into 𝑠; the substitution, 𝜎,

is merely a collection of these assignments. Formally, matching produces 𝜎 if and only if

applying 𝜎 to 𝑙, 𝜎(𝑙) equals 𝑠. Computing 𝜎(𝑙) consists of repeatedly replacing each variable

in 𝑙 according to the mapping defined by 𝜎 until no more replacements are possible.

For example, given the term 𝑠 ≡ ((𝑆 ·𝐾) · 𝑆) ·𝐾 and the rule 𝑅𝐶𝐿,1 ≡ (𝑆 · 𝑥) · 𝑦) · 𝑧 ≈

(𝑥 · 𝑧) · (𝑦 · 𝑧) such that 𝑙 ≡ (𝑆 · 𝑥) · 𝑦) · 𝑧:

{((𝑆 · 𝑥) · 𝑦) · 𝑧 ↦→ ((𝑆 ·𝐾) · 𝑆) ·𝐾} = 𝜎 ≡ {𝑥 ↦→ 𝐾, 𝑦 ↦→ 𝑆, 𝑧 ↦→ 𝐾}

because

100

𝜎(((𝑆 · 𝑥) · 𝑦) · 𝑧) = 𝜎((𝑆 ·𝐾) · 𝑦) · 𝑧

= 𝜎((𝑆 ·𝐾) · 𝑆) · 𝑧

= ((𝑆 ·𝐾) · 𝑆) ·𝐾

The rewrite step is completed by applying 𝜎 to 𝑟, the right-hand side of the rule. For

example, given that 𝑟 ≡ (𝑥 · 𝑧) · (𝑦 · 𝑧):

𝜎((𝑥 · 𝑧) · (𝑦 · 𝑧)) = (𝜎(𝑥) · 𝜎(𝑧)) · (𝜎(𝑦) · 𝜎(𝑧))

= (𝐾 ·𝐾) · (𝑆 ·𝐾)

So, we say that ((𝑆 ·𝐾) ·𝑆) ·𝐾→𝑅𝐶𝐿
(𝐾 ·𝐾) · (𝑆 ·𝐾). The decision of which rules can apply

to which subterms at what times—that is, the questions of whether rules apply in particular

orders when there are potentially overlapping rewrites, whether multiple rules can apply

simultaneously, or whether the same rule can apply in multiple places simultaneously—are

of great theoretical importance. The study of these various evaluation orders has a significant

bearing on what guarantees can be made about the behavior of the TRS. In this thesis, we

focus primarily on the well-known normal-order evaluation strategy, which assumes that at

most one rule can apply at a time, and only to the leftmost-outermost position in the term

to which any rule can apply. We further restrict normal-order evaluation by assuming that

if multiple rules could apply in the same position, the first in the sequence of 𝑅 is applied.

The set of rules 𝑅 thus defines the relation →𝑅. This relation describes the step-by-step

process by which terms are rewritten. Equivalently, it defines the interpreter according to

which programs are executed. This interpreter, as the name suggests, provides the semantics

for the programs of the TRS. It describes the means by which a given program is related

to all other programs. These relationships act as a sort of procedural semantics (Woods,

1981; Johnson-Laird, 1977), a perspective on meaning closely related to several prominent

theories of meaning by inferential role in psychology and philosophy of mind (Block, 1987,

1997; Carey, 2009). For example, in our Peano arithmetic system, the meaning of S(S(0))

is constrained by the fact that S(+(S(0) 0)), after a few steps, rewrites to S(S(0)). It is

also constrained by the fact +(0 S(S(0))) also rewrites to S(S(0)), as does +(S(S(0)) 0)

101

+(S(0), S(0)), and so on. This network of relationships provides meaning to each program.

HL models learning as a search through the space of TRSs. Like other LOT-based models,

it searches for a program which serves as a generative model of observed data. In contrast

with other LOT-based models, however, the data which HL considers are programs and their

outputs, and the programs which it learns are TRSs specifying the syntax and semantics of

an entire DSL. This allows it to add, remove, and redefine primitives as needed, supporting

genuine conceptual change as it searches for an LOT which provides a close fit to the data.

The only significant deviation made from the description given above is that HL provides

the ability to mark some rules as background rules which cannot be altered. This is more for

the sake of computational efficiency than formal necessity in that it helps to clearly delineate

which aspects of the language are relevant for learning and which can be safely ignored. It

otherwise considers any valid TRS a valid hypothesis.

4.2 Learning Mechanisms: Learning as iterative meta-

programming

This section describes an organizing principle of human learning essential to effectively us-

ing a diverse set of learning mechanisms, a related technique used by hackers, and their

implementation in HL. The organizing principle we focus on here is the way that much of

human learning is constructive thinking constrained by goals and hypotheses, rather than

blind local search. Hackers do something similar through the use of structured techniques

for revising programs. These techniques can be thought of as program-changing programs.

HL implements these ideas by reparameterizing search. Rather than searching directly for

TRSs, it searches for meta-programs describing a chain of revisions to some seed TRS. This

operates like a compact generative process for transforming the seed into some target TRS.

HL searches through this space using Monte Carlo tree search in order to iteratively explore

the space of revisions in a way that favors the revisions which are likely to be most useful.

102

4.2.1 Hypothesis-and-goal-driven search

Developmental and cognitive psychology are filled with accounts of diverse learning mech-

anisms. The microgenetic methods pioneered by Siegler and colleagues have been used to

show how variation, selection, and adaptation of learning strategies are key features of chil-

dren’s cognition (Siegler & Jenkins, 1989; Siegler, 1996). Significant bodies of work point

to the importance of mechanisms as varied as: deductive reasoning (Rips, 1994), Bayesian

inductive inference (Ullman & Tenenbaum, 2020) and many other forms of experimentation

and inductive reasoning (Schulz, 2012b; Gopnik, 2012), analogy (Gentner, 1983; Holyoak,

2012), bootstrapping (Carey, 2009), heuristic reasoning (Kahneman et al., 1982), mental

simulation (Ullman et al., 2017), mental modeling (Johnson-Laird, 1989, 2012), explanation

and abduction (Lombrozo, 2012), and counterfactual and causal reasoning (Chater & Oaks-

ford, 2013; Gerstenberg & Tenenbaum, 2017). Learners are constantly switching between

mechanisms based on the current situation and adapting them to new purposes. The exis-

tence of modular learning mechanisms and core cognition (Carey, 2009; Fodor, 1983) is a

reminder that natural selection also acts as a key phylogenetic learning mechanism.

If the list above reads like the table of contents for a psychology textbook, that is because

much of learning is constructive (Xu, 2019). This sort of constructive learning occurs in the

context of a hypothesis-and-goal-driven search. It makes use of highly structured mechanisms

that make specific hypotheses in service of specific goals. As a result, a lot of learning is

thinking, and a lot of thinking is learning (Lombrozo, 2019).

Like the empirical literature, cognitive models and artificial intelligence systems com-

patible with the idea of learning in an LOT are similarly filled with a variety of learning

mechanisms. Exhaustive enumeration remains perhaps the simplest technique (Gulwani et

al., 2017). Others focus on structured exploitation of constraints, including: deductive rea-

soning and theorem proving (Newell et al., 1959; Newell & Simon, 1956; Manna & Waldinger,

1980; Green, 1981; Joshi et al., 2002), syntactic pattern matching (Sussman, 1973), induc-

tive logic programming (Muggleton et al., 2015; Cropper & Muggleton, 2016; Cropper et al.,

2019), heuristic reasoning (Lenat, 1983; Lenat, 1976), type-directed synthesis (Polikarpova

et al., 2016; Osera & Zdancewic, 2015), SAT/SMT solving (Solar-Lezama, 2008; Nye et al.,

103

2019) and answer set programming (Cropper & Morel, 2020). Examples of Bayesian in-

ductive inference form another central class of learning mechanisms (Ullman & Tenenbaum,

2020), especially hierarchical Bayesian inference (Goodman et al., 2011; Ullman et al., 2012;

Lake et al., 2015), exact and approximate inference in probabilistic graphical models (Gop-

nik & Tenenbaum, 2007; Gopnik & Wellman, 2012), and learning the weights of stochastic

grammars (Dechter et al., 2013). Still others are fundamentally stochastic, such as: neu-

ral program synthesis (Balog et al., 2017; Devlin et al., 2017), Markov Chain Monte Carlo

(Goodman, Tenenbaum, Feldman, et al., 2008; Piantadosi, 2011; Ullman et al., 2012), Se-

quential Monte Carlo (Ellis et al., 2019), and genetic programming (Koza, 1989; Koza &

Koza, 1992). Reinforcement learning is another, less common, formalization of learning in

compositional languages (Simmons-Edler et al., 2018).

The richness of human learning and the richness of computational models of learning,

however, are importantly different. Critically, while computational models have explored a

wide range of learning mechanisms, any given model typically makes use of just one. Even

when a single model makes use of multiple mechanisms, this is most often done by composing

the mechanisms into a more complex, but still singular, super-mechanism. Moreover, these

mechanisms are often simple (even dumb) local search mechanisms. They act at random

or by brute force rather than through a structured hypothesis-and-goal-driven search. This

pattern stands in sharp contrast to the diversity of mechanisms available to human learners at

any given moment and the sophisticated ways in which they decide which mechanism to use

in any given situation. While closing this gap is likely to require sustained interdisciplinary

effort over the course of years, if not decades, the child as hacker hypothesis around which

this thesis is organized provides a concrete roadmap by which it might be accomplished.

It identifies the diversity of mechanisms as a central feature of learning and focuses on

the actual practices of human hackers as testable hypotheses about specific mechanisms in

learning which remain largely unexplored.

4.2.2 Hacking as iterative revision

This section describes the fundamental pattern hackers use to write code and the implications

of that approach for a computational model of learning. A mature codebase is not written

104

at a single stroke but instead develops iteratively through a series of revisions. This practice

of iterative revision is perhaps the fundamental pattern of hacking (Sussman, 1973; Ellis

et al., 2019; Fowler, 2018). At any given time, a hacker is working to introduce just a single

change to her code. Ideally, this change is fairly targeted and easy to implement, so that

she spends very little time with a codebase that she cannot run and test. This is sometimes

impossible—for example, rewriting a program in terms of a new DSL is a big job—but

she can often decompose even these big tasks into a series of smaller revisions. She then

chains these revisions together, accumulating them to effect dramatic changes in her code.

Of course, she might get excited and slip out of this pattern from time to time, working

on many changes simultaneously or forgetting to break a big change down into a series of

small changes. When she is hacking at her best, however, she is iteratively revising her code

through a series of small changes.

Some of the changes she makes affect the meaning of her code—i.e. running a certain

program produces a different output than it did previously. Many others, however, merely

refactor the code. They change its shape, or factor, without changing its meaning. Similarly,

some changes immediately and obviously improve her code, while others do not. She may

occasionally make several revisions in a row which make her code longer or slower without

adding any new functionality. This is in fact often the case for various types of refactoring.

Chaining several of these seemingly useless refactorings, however, may reveal patterns which

future revisions are able to exploit, such that the overall effect of the entire sequence is to

dramatically improve her code.

Iterative revision may play such a fundamental role for several reasons. Perhaps one of

the most obvious is that humans have limited working memory. Once code grows sufficiently

complex, it is difficult to predict how it will behave without actually running it, difficult

to understand how each of a series of changes will impact the code without making each

change in turn, and difficult to remember where you are in the process of making a revision

if the revision itself is complex. Serializing her work allows a hacker to scale even complex

modifications to fit her own cognitive limits.

Iteration also provides a steady signal that a hacker is heading in the right direction. If

each change overlapped with several others, the code would never be in a functioning state,

105

and she would be able to gather little information on whether the changes made so far had

actually improved the code. By separating them into serial units of work, she accumulates

a sequence of signals by which she can judge her progress, decide whether to continue, undo

past changes, or pause to consider her options in more detail.

Finally, and perhaps most importantly, the iterative nature of her work allows her to

reuse stereotypical patterns of revision. She is constantly in close contact with her code,

and she is likely writing code unlike anything she has written previously. Her changes to

the code, however, rarely occur at the level of individual symbols. Instead, much like the

patterns which skilled chess players use to perceive a chess board (Chase & Simon, 1973) and

generate likely moves (Wan et al., 2011), she develops a network of strategies for perceiving

latent structure in her code and related techniques which revise her code to make that

latent structure explicit. Many of these strategies and techniques are so well defined that

they are, in effect, program-changing programs. Most are heavily parameterized, so that

they can be easily adapted to a variety of situations. Each represents a specific hypothesis

about the meaning of the code which can be used by a hacker, in the context of her current

goals, to explore specific ideas about the underlying structure of her code. Most are also

sensitive to the semantics of the code, changing it in ways that either preserve (e.g. refactor)

the meaning, or make latent meaning more explicit through abstraction and generalization.

Rather than operating at the level of individual symbols, hacking now takes place primarily

in this meta-language developed for describing the generative process of hacking.

The impact of this approach is two-fold. First, the series of revisions accumulated over

time essentially describes a meta-program by which her code has been constructed. It may

not be the only such meta-program, nor even the optimal one, but it describes her code

via a compact generative process by which the entire codebase can be recovered. Given the

structure in each revision, this generative meta-program is likely to be much shorter than the

actual code itself. Second, this approach makes it easier to hack useful code. Because the

meta-program required to write useful code is typically much simpler than the code itself,

the meta-program is easier to find than the program itself. In effect, there are fewer decisions

that must be made correctly, fewer bits that need to be set accurately. Moreover, because

most revisions are heavily parameterized, the process of constructing even this relatively

106

short meta-program can itself be factored into two parts. First, a hacker determines which

of the many kinds of revisions at her disposal might be most appropriate, then she searches

the much smaller space of possible parameterizations to find those which are likely to be

most useful.

The idea of code as data is central to this process. Rather than searching blindly, the

hacker is able to observe her code, itself an artifact in the world, analyze its structure, and

use that analysis to guide her decision making. This allows her to transform the gargantuan

task of finding one of a very small set of possible solutions to her problem into a series of

much simpler problems sharing identical structure. Each step poses the same problem: given

my current code and current goal, what change can I make that will bring me closer to that

goal? This framing is useful because it explicitly transforms hacking into a hypothesis-and-

goal-driven search, with the revision techniques playing a similar role to the mechanisms

used during learning. A hacker’s techniques are unlikely to be identical to processes like

analogy or experimentation, but they are analogous in that they encode ways to apply

specific hypotheses to code, i.e. a hacker’s knowledge representation, to pursue certain goals.

This framing also decomposes hacking into discrete steps, such that a hacker is likely to take

many such steps for each program she writes. This not only makes each problem to be solved

smaller, but it gives her more practice and more frequent learning signals than writing each

program monolithically from scratch.

The implications of this approach for a computational model of learning extend well

beyond the scope of a single model. HL, however, takes three primary steps toward applying

these lessons toward building a computational model of learning. First, HL is built around

a series of smart search mechanisms modeling structured techniques hackers use to revise

code. Each mechanism is associated with a strategy for recognizing when the mechanism can

be applied in addition to techniques for actually revising code appropriately. Many of these

mechanisms are parameterized, describing families of possible revisions. Most also decompose

into a series of submechanisms, allowing HL to explicitly learn which parameterizations

are most useful. All of them are program-revising programs, taking a TRS as input and

returning a TRS as output. Second, HL learns by constructing chains of mechanisms into

meta-programs, which it then executes to generate concrete TRSs. This process effectively

107

decouples the complexity of finding a program from the length of the program itself, making

it easy to find certain kinds of long programs, namely those whose input/output data contains

structure that HL knows how to exploit. Third, HL uses Monte Carlo tree search to decide

which meta-programs to explore in which order. It learns over time which partial meta-

programs are most likely to lead to good solutions, avoids repeating itself, and balances

exploration of novel meta-programs versus exploitation of known meta-programs. The next

three sections describe how each of these components are implemented in HL.

4.2.3 HL’s learning mechanisms

HL is equipped with 11 kinds of mechanisms (Table 4.3). Some are primarily refactoring

moves, while others almost always introduce new behavior. Developing these mechanisms

took substantial work, but they are only a first step. A skilled hacker likely has hundreds of

such techniques available to them (Abelson et al., 1996; Fowler, 2018). Nonetheless, this first

step is a significant shift toward a more hacker-like model of learning. This section describes

briefly each mehcanism in turn and provides an example of the kind of transformation it can

produce.

MemorizeDatum HL is designed to learn from observations, specifically ordered pairs

of programs, (𝑖, 𝑜), such that 𝑖 represents some input program, and 𝑜 represents the output

of evaluating 𝑖. 𝑜 might represent the complete evaluation of 𝑖 or merely a partial evaluation

(i.e. it may be possible to treat 𝑜 as an input 𝑖′ which could itself be evaluated to produce

some further output 𝑜′, as in 𝑖→𝑅 𝑜 ≡ 𝑖′→𝑅 𝑜′). The MemorizeDatum mechanism selects a

single input/output pair and adds it directly to a hypothesis TRS, effectively hard-coding

an exception into the language. The new rule instructs the TRS to immediately rewrite 𝑖 to

𝑜 whenever the input program contains 𝑖. MemorizeDatum takes a single parameter, an index

specifying which datum to memorize of those seen so far. A datum cannot be memorized if

an equivalent rule already exists in the TRS.

MemorizeAll This mechanism is similar to MemorizeDatum except that it memorizes

all the observed data, rather than a single datum. Like MemorizeDatum, however, data are

not memorized if an equivalent rule already exists in the TRS. The mechanism takes no

parameters.

108

I.MemorizeDatum(2)
where datum 1: C [1, 38, 19, 4] = [19]
where datum 2: C [31, 41, 59, 62, 5] = [59]
where datum 3: C [68, 47, 3, 6, 0, 9, 77] = [3]
C [x, y, 19, z] = [19]

C [31, 41, 59, 62, 5] = [59]
C [x, y, 19, z] = [19]

I.MemorizeAll()
where datum 1: C [1, 38, 19, 4] = [19]
where datum 2: C [31, 41, 59, 62, 5] = [59]
where datum 3: C [68, 47, 3, 6, 0, 9, 77] = [3]
C [31, 41, 59, 62, 5] = [59]
C [x, y, 19, z] = [19]

C [1, 38, 19, 4] = [19]
C [68, 47, 3, 6, 0, 9, 77] = [3]
C [31, 41, 59, 62, 5] = [59]
C [x, y, 19, z] = [19]

I.DeleteRule(3)
C [1, 38, 19, 4] = [19]
C [68, 47, 3, 6, 0, 9, 77] = [3]
C [31, 41, 59, 62, 5] = [59]
C [x, y, 19, z] = [19]

C [1, 38, 19, 4] = [19]
C [68, 47, 3, 6, 0, 9, 77] = [3]
C [x, y, 19, z] = [19]

I.SampleRule(·, C, ·, Cons, ·, 7, x, x)
C [x, y, z] = [z] C (Cons 7 x) = x

C [x, y, z] = [z]

I.RegenerateRule(2, [1, 0, 1], ·, ·, +, x, x)
C [x, y, z] = [z]
C [17, x, 38, 4] = [38]

C [x, y, z] = [z]
C [17, x, 38, 4] = [(+ x x)]

I.Variablize(2, 63)
C [w, x, y, z] = [y]
C [91, 12, 63, 42, 35] = [63]

C [w, x, y, z] = [y]
C [91, 12, x, 42, 35] = [x]

I.AntiUnify()
C [25] = Empty
C [0] = Empty
C [9, 25] = (Cons 9 (C [25]))
C [81, 9, 25] = (Cons 81 (C [9, 25]))
C [50, 0] = (Cons 50 (C [0]))
C [28, 50, 0] = (Cons 28 (C [50, 0]))
C [37, 28, 50, 0] = (Cons 37 (C [28, 50, 0]))

C [x] = Empty
C (Cons x y) = (Cons x (C y))

I.Compose([1], [0])
C [15, 6, 38] = [0, 15, 6, 38, 99]
C [12, 71] = [0, 12, 71, 99]
C [74, 3, 8, 16] = [0, 74, 3, 8, 16, 99]

C x = g (f x)
f [15, 6, 38] = [15, 6, 38, 99]
f [12, 71] = [12, 71, 99]
f [74, 3, 8, 16] = [74, 3, 8, 16, 99]
g [15, 6, 38, 99] = [0, 15, 6, 38, 99]
g [12, 71, 99] = [0, 12, 71, 99]
g [74, 3, 8, 16, 99] = [0, 74, 3, 8, 16, 99]

I.Recurse(C, [1], [1, 1])
C [81, 9, 25] = [81, 9]
C [37, 28, 50, 0] = [37, 28, 50]

C [25] = Empty
C [0] = Empty
C [9, 25] = (Cons 9 (C [25]))
C [81, 9, 25] = (Cons 81 (C [9, 25]))
C [50, 0] = (Cons 50 (C [0]))
C [28, 50, 0] = (Cons 28 (C [50, 0]))
C [37, 28, 50, 0] = (Cons 37 (C [28, 50, 0]))

I.Generalize()
C [x 1] = [1 (* 2 x) (* x x)]
C [x 2] = [4 (* 4 x) (* x x)]
C [x 3] = [9 (* 6 x) (* x x)]

C [x y] = [(f y) (* (g y) x) (* x x)]
f 1 = 1
f 2 = 4
f 3 = 9
g 1 = 2
g 2 = 4
g 3 = 6

I.Stop()
C [x] = [x]
C (Cons x y) = (C y)

C [x] = [x]
C (Cons x y) = (C y)

Table 4.3: An example application of each learning mechanism implemented in HL. Each
mechanism is listed, along with its arguments, including I, the input TRS, listed immediately
below. The output is listed to the right.

109

DeleteRule This mechanism deletes a single rule from the TRS. It takes a single pa-

rameter, an index specifying which rule to delete.

SampleRule The SampleRule mechanism samples a new rule according to a grammar-

based prior constructed from the signature of the TRS generated from the earlier revisions in

the meta-program. This new rule is then prepended to the TRS. It takes a variable number

of parameters specifying the structure of the rule atom by atom.

RegenerateRule The RegenerateRule mechanism chooses a unique location in an ex-

isting rule and replaces the subterm in that location with a newly sampled subterm of the

same type. Like SampleRule it samples the subterm according to a grammar-based prior

constructed from the signature of the TRS generated from the earlier revisions in the meta-

program. The mechanism requires that the TRS contains at least one rule; the modified

rule remains in its original order. The mechanism takes a variable number of parameters:

the index of the rule, a vector encoding the location of the subterm, and one for each atom

in the newly generated subterm. SampleRule and RegenerateRule provide a similar search

dynamic to sampler-based models of learning in the LOT (e.g. Goodman, Tenenbaum, Feld-

man, et al., 2008; Ullman et al., 2012; Piantadosi et al., 2012, 2016), thus allowing HL to

default to that approach should more structured mechanisms prove unfruitful. Operating at

random or enumerating options exhaustively are sometimes the best options, but arguably

only if other options have been exhausted (Sussman, 1973).

Variablize This mechanism selects a single subterm in a single rule in a TRS and replaces

all occurrences of that subterm within the rule with a fresh variable. It therefore introduces

an abstraction encoding the hypothesis that repetition within a rule is not accidental but

represents a meaningful reuse of the same structure. The mechanism takes two parameters:

the first indicating which rule to revise, and the second identifying the subterm to be replaced.

AntiUnify AntiUnify is the first mechanism which operates on an entire TRS rather

than a single rule. It recursively attempts to anti-unify10 each pair of rules in a TRS. If an

10Unification is a fundamental concept in computer science with a long history (Robinson, 1965; Martelli
& Montanari, 1982; Baader & Snyder, 2001). It is the practice of substituting values for variables in a pair
of expressions to find a most-general specialization of the two expressions. If variables in an expression are
treated as gaps to be filled, unification finds a way to fill those gaps in a pair of terms such that they become
the same term. The related concept of anti-unification looks for a way to replace values with variables to
find a least-general generalization. It looks for ways to introduce gaps such that two terms become the same.

110

anti-unification can be found, the anti-unification is retained in place of the original rules.

If not, the original rules are both kept, and the next rule is analyzed. Despite its apparent

complexity, AntiUnify takes no parameters.

Compose This mechanism provides a way of hypothesizing that the effect of some func-

tion is actually best explained as the composition of functions. The mechanism looks for a

subterm, 𝑇 occurring on the left-hand side of one more rules and of type t1 -> t1—that is,

a function which takes some type as input and returns the same type as output. It creates a

new rule specifying that occurrences of 𝑇 should be replaced with a composition of two new

symbols, 𝑓 and 𝑔, also of type t1 -> t1. For each rule using 𝑇 , it then chooses a specific

decomposition of the right-hand side of that rule, assigning responsibility for some portion of

the right-hand side to 𝑓 and another portion to 𝑔. The mechanism takes a single parameter

specifying the term to be replaced and the way in which the right-hand sides should be de-

composed. By focusing on introducing two new symbols of the same type, Compose actually

implements a limited form of function composition. More generally, the two symbols could

have different types so long as the output of the first served as the input to the second, and

the input of the first and output of the second matched the overall input and output types,

respectively, of the symbol they replace. This more general approach would have dramati-

cally increased the implementation complexity of the mechanism, however, so this extension

has been delayed to future work. The current mechanism does, however, allow for a limited

form of conceptual change by introducing new symbols whose initial meaning is relatively

unconstrained and can be changed by subsequent revisions.

Recurse The Recurse mechanism hypothesizes that some subterm in a TRS is best

explained recursively. It specifically hypotheses that the subterm is structurally recursive,

operating over successively smaller pieces of a recursively defined structure like numbers,

trees, or lists. A structurally recursive function, 𝑓 , consists of a general case describing

the behavior of 𝑓 on some recursive structure in terms of a recursive call to 𝑓 , and a set

of base cases which terminate the recursion. Recurse identifies a subterm representing a

possibly structurally recursive function, and selects the portion of the recursive structure

that might be affected by each application of the general case. Crucially, it does not describe

a fully-formed recursive case. It leaves that to future revisions. It only identifies which

111

portion of the input and output structure the recursive case is responsible for processing.

The mechanism then replaces each relevant rule with a set of rules created by repeatedly

applying the general case until it cannot be applied and discovers a base case. Recurse is

thus a refactoring mechanism. It typically makes a TRS longer but in doing so, exposes

repeated structure that can often be abstracted away by a mechanism like AntiUnify or

Variablize. The mechanism takes parameters specifying the recursive subterm and which

portions of the left-hand side and right-hand side should be processed recursively.

Generalize The Generalize mechanism hypothesizes that one or more rules which are

identical in all but a few subterms actually represent specific instances of a more general rule.

It replaces each discrepancy on the left-hand side with a fresh variable, and it replaces each

discrepancy on the right-hand side with a call to a new function symbol taking the variables

from the left-hand side as arguments. It removes the original rules and replaces them with a

copy of the generalized rule, as well as specific examples of each newly introduced symbol. In

this way, Generalize refactors a set of rules into one or more subproblems, directly encoded

in the TRS, which can be revised by future mechanisms. For the sake of efficiency, the

current implementation limits the number of left-hand side discrepancies to one and the

number of right-side discrepancies to three. The mechanism takes no parameters.

Stop Because HL operates iteratively, it can continue extending a given meta-program

indefinitely. It is necessary to include a Stop mechanism instructing HL to consider the

meta-program complete. It takes no parameters and has no impact on the TRS generated

from the meta-program.

4.2.4 Chaining mechanisms into meta-programs

A large part of the success of hacking rests in the ability to iteratively revise programs. HL

accommodates this by chaining its learning mechanisms together into meta-programs. These

meta-programs describe a generative process for revising a seed TRS. If that seed TRS is

fixed to a set of assumed background knowledge modeling the LOT before learning, the

meta-program thus describes a generative process for revising that LOT over time, adding,

removing, and redefining the meaning of various primitives in light of observed data.

The global structure of these meta-programs is straightforward. Each applies a linear se-

112

quence of mechanisms, 𝑀1,𝑀2, . . ., to some seed TRS, 𝐻0, and terminates with Stop, written

in the style of method chaining from object-oriented programming as 𝐻0.𝑀1.𝑀2.Stop().

The local structure, however, is more complex. Only a few mechanisms—AntiUnify,

MemorizeAll, Stop, and Generalize—are parameter-free. Other mechanisms, most no-

tably SampleRule and RegenerateRule, require significant parameterization before they

completely specify the next mechanism to be taken. Work on the next mechanism can-

not begin until the current mechanism has been fully parameterized. Moreover, the various

mechanisms available to HL can only be applied in specific contexts. DeleteRule, for ex-

ample, requires that the TRS contain at least one rule. MemorizeDatum and MemorizeAll

require that there be at least one datum which does not already appear in the TRS. Others,

like Compose or Recurse require that the TRS contain rules with a specific structure. Deci-

sions about which mechanisms can be chosen when and how each is parameterized are thus

context-sensitive but can easily be computed given the TRS generated by the meta-program

thus far.

To see how these mechanisms interact to improve learning, consider the following ex-

ample. The goal is to learn a description of the function F x, where x is a list of natural

numbers. Assume that the seed TRS, 𝐻0, has symbols Cons and Empty for constructing lists,

the numbers 0–99, the basic arithmetic operators (e.g. +, -, *, and /), and rules describing

arithmetic, but is otherwise empty:

(4.1)

𝐻0 contains no rules specific to understanding F and so is presented as an empty list of rules.

Also assume that 𝐻0 has access to four input/output pairs:

F [2, 5, 1, 4, 8] = [4, 2, 1]

F [3, 1, 4, 0, 3, 2, 2] = [9, 3, 4, 3]

F [0, 4, 6, 1, 4, 7, 1, 5, 8] = [0, 0, 6, 4, 1]

F [6, 0, 2, 5, 4, 9, 7] = [36, 6, 2, 4]

(4.2)

At this point, the only mechanisms available are Stop, SampleRule, MemorizeDatum, and

MemorizeAll. HL cannot regenerate, delete, or generalize rules that do not yet exist. In

113

many cases, it does the same thing a human might do—it takes a look at the available data

by selecting MemorizeAll. This gives:

F [2, 5, 1, 4, 8] = [4, 2, 1]

F [3, 1, 4, 0, 3, 2, 2] = [9, 3, 4, 3]

F [0, 4, 6, 1, 4, 7, 1, 5, 8] = [0, 0, 6, 4, 1]

F [6, 0, 2, 5, 4, 9, 7] = [36, 6, 2, 4]

(4.3)

As expected, all four observations have now been memorized, directly rewriting these

known inputs to their known outputs. The TRS now accurately explains the data, but

from the perspective of generalization, this first step appears unhelpful. It plays a poten-

tially critical role, however, in that it provides direct access to the internal structure of the

input/output pairs for refactoring and revision. For a human, a quick glance over the ex-

amples suggests that the first element of the output is unlike the others. It does not always

appear in the list, while the others all appear to come from the list in order. Maybe the

best way to tackle the task would be to split it into pieces, figuring out which elements are

selected, and then figuring out how the first element is constructed. HL can capture this

approach with the Compose mechanism11:

F x = H (G x)

G [2, 5, 1, 4, 8] = [2, 1]

G [3, 1, 4, 0, 3, 2, 2] = [3, 4, 3]

G [0, 4, 6, 1, 4, 7, 1, 5, 8] = [0, 6, 4, 1]

G [6, 0, 2, 5, 4, 9, 7] = [6, 2, 4]

H [2, 1] = [4, 2, 1]

H [3, 4, 3] = [9, 3, 4, 3]

H [0, 6, 4, 1] = [0, 0, 6, 4, 1]

H [6, 2, 4] = [36, 6, 2, 4]

(4.4)

This is a much longer TRS, but by hypothesizing that F is actually best explained as the

interaction of two distinct processes, it carves the dynamics of F at a crucial joint. It factors
11Compose, like many of HL’s learning mechanisms is parameterized. This example focuses on how the

mechanisms compose to work together, so assume the appropriate parameterization is chosen for each mech-
anism.

114

F into two parts, G and H, which can be explained separately. This sort of decomposition is

a basic pattern in human problem solving. Here, it effectively creates two subproblems that

exist within the scope of the larger problem of explaining F. G captures the part of F which

decides which elements of the input to copy over. Since the number of elements seems to

vary, this process is likely recursive. Applying HL’s Recurse mechanism to G gives:

G [8] = Empty

G [2] = Empty

G [7] = Empty

G [1, 4, 8] = (Cons 1 (G [8]))

G [2, 5, 1, 4, 8] = (Cons 2 (G [1, 4, 8]))

G [3, 2, 2] = (Cons 3 (G [2]))

G [4, 0, 3, 2, 2] = (Cons 4 (G [3, 2, 2]))

G [3, 1, 4, 0, 3, 2, 2] = (Cons 3 (G [4, 0, 3, 2, 2]))

G [1, 5, 8] = (Cons 1 (G [8]))

G [4, 7, 1, 5, 8] = (Cons 4 (G [1, 5, 8]))

G [6, 1, 4, 7, 1, 5, 8] = (Cons 6 (G [4, 7, 1, 5, 8]))

G [0, 4, 6, 1, 4, 7, 1, 5, 8] = (Cons 0 (G [6, 1, 4, 7, 1, 5, 8]))

G [4, 9, 7] = (Cons 4 (G [7]))

G [2, 5, 4, 9, 7] = (Cons 2 (G [4, 9, 7]))

G [6, 0, 2, 5, 4, 9, 7] = (Cons 6 (G [2, 5, 4, 9, 7]))

F x = H (G x)

H [2, 1] = [4, 2, 1]

H [0, 6, 4, 1] = [0, 0, 6, 4, 1]

H [3, 4, 3] = [9, 3, 4, 3]

H [6, 2, 4] = [36, 6, 2, 4]

(4.5)

Again, the length of the TRS grows dramatically, but the behavior of G has been neatly

unrolled. The notation might look odd, but the behavior is fairly similar to something a

human might do. HL scans along the list, repeatedly breaking the list into similarly-sized

pieces and correlating them to sequential pieces of the output until it gets to the end of list,

where it writes down a separate rule for terminating the recursion. That is, it aligns the

115

input and output as it processes the recursion. This would be a poor final solution, but

refactoring in this way shows that the base cases (lines 1–3) share most of their structure,

as do the recursive cases (lines 4–15). Seeing this kind of repeated structure is a good signal

that some kind of abstraction is probably necessary. For HL, the AntiUnify mechanism

readily introduces appropriately general descriptions for both cases:

G [x] = Empty

G (Cons x (Cons y z)) = (Cons x (G z))

F x = H (G x)

H [2, 1] = [4, 2, 1]

H [0, 6, 4, 1] = [0, 0, 6, 4, 1]

H [3, 4, 3] = [9, 3, 4, 3]

H [6, 2, 4] = [36, 6, 2, 4]

(4.6)

G has now been neatly explained via two simple rules. AntiUnify is an exceptionally pow-

erful mechanism, introducing multiple variables in a highly structured way that recognizes

repeated structures across rules. It is in this way analogous to the sort of analogy proposed

to crucial to children’s learning (Carey, 2009; Gentner, 1983). It captures an important

way of articulating abstraction that is nonetheless parameter free. Turning to H, it appears

that most elements are directly copied. The Variablize mechanism recognizes this kind of

repeated structure within a rule and uses a variable to abstract over that structure. One way

to proceed, then, is for HL to use this mechanism to ignore all the copied elements except

those adjacent to the first element. Abstracting over repeated structure within a rule is

another limited form of analogical reasoning built around the hypothesis that the repetition

is more important than the specific structure being repeated. This significantly simplifies

the rules for H:

116

H (Cons 2 y) = (Cons 4 (Cons 2 y))

H (Cons 0 y) = (Cons 0 (Cons 0 y))

H (Cons 3 y) = (Cons 9 (Cons 3 y))

H (Cons 6 y) = (Cons 36 (Cons 6 y))

G [x] = Empty

G (Cons x (Cons y z)) = (Cons x (G z))

F x = H (G x)

(4.7)

At this point, the H rules are identical save for a single subterm on the left-hand side

and two subterms on the right-hand sides. One way to continue is to try to explain the

differences in the right-hand side in terms of the differences on the left-hand side. The

Generalize mechanism proposes a structural relationship between these subterms:

H (Cons x y) = (Cons (J x) (Cons x y))

J 2 = 4

J 0 = 0

J 3 = 9

J 6 = 36

G [x] = Empty

G (Cons x (Cons y z)) = (Cons x (G z))

F x = H (G x)

(4.8)

A human might immediately recognize the functional relationships at play here. Right

now, HL can recognize simple things like copying, but it has no learning mechanisms for

dealing with numerical and arithmetical structure unless that structure is explicitly repre-

sented via something like Peano arithmetic. In this case, where it is presented with a base-10

encoding, its structure-based search mechanisms will fail to discover the squaring relation-

ship encoded in J. Because the relationship is fairly simple, however, random sampling can

close the gap. The SampleRule mechanism could easily propose that J x = * x x, giving:

117

J x = * x x

H (Cons x y) = (Cons (J x) (Cons x y))

G [x] = Empty

G (Cons x y) = (Cons x (G y))

F x = H (G x)

(4.9)

Because this chain of revisions could continue indefinitely, HL has to explicitly decide

that it’s done and generate a complete meta-program by applying the Stop mechanism. The

result is the same as TRS 4.9. This final language is significantly shorter and simpler than the

data, yet is completely consistent with it. Moreover, it embodies a general hypothesis about

the domain and consequently covers many lists which the original could not. It discovered

this hypothesis primarily by making structured transformations rather than through blind

sampling or exhaustive enumeration. Moreover, these transformations introduced three new

primitives into the language. When the structured methods failed, HL was able to rely on

random sampling to produce the necessary small changes to complete the language. Overall,

the meta-program approach required just nine mechanisms to describe these data. Moreover,

this process is similar to the process a human might take to solve this process. While the

discussion likely took much longer to read than it would have to perform as a learner, the

steps are similar. Both HL and people scan the data, identify structural similarities, abstract

them into general patterns, and repeat until discovering a sufficiently compact description

of the data.

4.2.5 Monte Carlo tree search

At a given point in a meta-program, the structure of which mechanisms can be chosen

next and how each can be parameterized depends heavily on the TRS described by the

mechanisms used up to that point. These options can be easily computed given that TRS,

but they cannot be compactly described as a grammar. It is instead easier to explicitly

organize the possible meta-programs as a tree, with the root representing the seed TRS, 𝐻0,

each branch representing the application of a possible mechanism, and each child representing

the outcome of revising its parent by applying the mechanism specified by the connecting

118

branch. Paths from the root continue indefinitely until encountering a Stop branch. Each leaf

thus represents the result of applying a complete meta-program to 𝐻0—the meta-program

specified by the path from the root to that leaf. Intuitively, such a tree represents the space

of all possible ways for HL to revise 𝐻0, with each leaf representing a possible outcome.

This tree, however, is unboundedly large. Given the finite time and computational re-

sources available during learning, a learner can only explore a portion of this tree; ideally,

only those parts which describe the most valuable meta-programs, those providing the best

explanations of the observed data. If the learner knew these paths in advance, however, there

would be no need to learn at all. The learner could simply report the known best options.

Instead, the learner needs a way to iteratively construct a partial search tree which favors

those parts of the full search tree which are likely to lead to valuable solutions while at the

same time remaining cognizant of its own ignorance. As a terminological note, this partial

tree now contains two kinds of leaves. Some follow a Stop branch and thus represent the

application of a complete meta-program. Call these leaves terminal nodes. Others represent

the application of partial meta-programs that must be extended to become complete. Call

these leaves unvisited nodes, as they have not yet been selected and expanded during search.

Monte Carlo tree search (MCTS; see Browne et al., 2012, for a detailed review) provides a

solution to this problem. MCTS is an algorithm for iteratively constructing a partial search

tree like the one described above. It has been actively explored in recent years, and there

are many variants. The basic algorithm used in HL is as follows (Figure 4-6):

1. Selection: Starting from the root node, repeatedly select children according to some

selection algorithm until reaching an unvisited node, 𝑃 .

2. Expansion: Select a branch, 𝑀 , leaving 𝑃 , and create a child node, 𝐶, by applying

the mechanism at 𝑀 to the TRS at 𝑃 .

3. Simulation: If 𝑀 is Stop, score the resulting hypothesis. If not, simulate a possible

completion by randomly selecting possible moves until selecting Stop. Score the resulting

hypothesis.

4. Backpropagation: Use the score, 𝑆, gained during Simulation to update statistics

along the path leading to 𝐶. These statistics are used during Selection. If 𝐶 is a

119

Selection Expansion

S

Simulation
S

S

S

S

S

Backpropagation

Figure 4-6: A visual overview of Monte Carlo Tree Search: each of the four stages are
illustrated. Visited nodes are white, terminal nodes are gray, and unvisited nodes are small
and dark gray. S represents the score acquired during simulation. Nodes which are pruned,
either due to a failed mechanism, or reaching a terminal node, are outlined in a lighter gray.
Image based on Figure 1 of James et al. (2017).

terminal node, or if there are no possible moves leaving 𝐶, mark 𝐶 as fully explored, as

well as any ancestor nodes which are similarly fully explored. This information is used

to ensure that Selection always reaches an unvisited node. Otherwise, add unvisited

nodes for all new branches.

Completing these four steps constitutes a single iteration. Each iteration adds a single

leaf node to the search tree and adds a single scored meta-program to the set of explored

hypotheses, either by simulation or by reaching a terminal node. This iterative nature means

MCTS can be stopped at anytime, producing as output the set of all explored hypotheses.

These hypotheses can then be queried in any number of ways, e.g. to identify the best

program seen so far.

Intuitively, the dynamics of MCTS can be interpreted as iteratively expanding a set

of possible futures. Each path in the search tree represents a particular line of thinking

about how to proceed from the current state. Each iteration adds a single step to a single

line of thinking based on how promising it seems to the learner. The learner might extend

the same line of reasoning for several steps, or it might jump from one chain to the next,

uncertain about where the most promising options are likely to be. In HL, each extension is

deterministic and structured, but the choice of which extension to make is stochastic. The

overall effect is that HL considers many ways in which it might revise a given TRS, noisily

120

jumping between them in search of options that provides a good explanation of the data.

MCTS was originally developed as part of artificial intelligence agents for two-person

board games like Go (Silver et al., 2016). Learning mental representations, however, is

a significantly different task, and we thus alter the basic MCTS algorithm in several key

ways. First, two-player MCTS alternates between the moves of the agent and the moves

of that agent’s opponent. HL, however, models the learning of a single individual, with

no opponent, and so expands something more akin to a single-player tree. Second, two-

player MCTS typically allows for the Selection of the same leaf node multiple times. HL,

however, is seeking to explore as many TRSs, as many LOTs, as possible. When search

stops, it can select the best TRS seen so far. This is based entirely on the score assigned

during Simulation, so no new information can be gained by visiting a node twice. Third,

two-player MCTS is fundamentally more uncertain, because the behavior of the opponent

can be explored but not fully predicted. It is thus important to seek areas in the search

tree that are valuable on average, areas which maximize the probability that the agent will

win, no matter what the opponent does. HL cares more about finding areas in the search

tree containing the most valuable individuals. Rather than considering the mean value of a

subtree, it considers the maximum values in that subtree.

The fact that HL is seeking good individuals rather than good subtrees is directly reflected

in its selection algorithm. The goal of the selection algorithm is, for a given parent node 𝑃

with child nodes 𝑐1. . .𝑐𝑛, to select some child node 𝑐𝑗 maximizing some objective function.

It is thus a form of the multi-armed bandit problem from reinforcement learning (Sutton &

Barto, 2018); our focus on seeking maximally good individuals is a variant known as the max

bandit or extreme bandit problem (Cicirello & Smith, 2005; Carpentier & Valko, 2014). The

Selection step, described above, repeatedly uses this selection algorithm until it reaches

an unvisited node. The selection algorithm thus plays a key role in biasing which portions

of the search tree get explored. For its selection algorithm, HL uses a variant of Thompson

sampling (Thompson, 1933) parameterized by a schedule 𝑆 : N → R+ and a count 𝑁 : N.

For the experiments reported in this thesis, we use 𝑆(𝑡) = 5/ ln(1+𝑡) and 𝑁 = 10. Assuming

that each node 𝑛 tracks the number of times it has been visited v(𝑛) (i.e. the number of

nodes in the subtree rooted at 𝑛), and an array, t(𝑛), of the 𝑁 highest scores seen during

121

the Simulation step for any node in the subtree, the algorithm is as follows:

1. If Stop is available and its child unvisited, visit it.

2. If there are other unvisited children, select one at random.

3. If all children have been visited, return

argmax
𝑐1≤𝑖≤𝑛

(MaxThompson(𝑆,𝑁, 𝑐𝑖)).

For a subtree rooted at some node 𝑛, MaxThompson(𝑆, 𝑛) first adjusts each score t(𝑛)1≤𝑖≤𝑁

as 𝑒t(𝑛)𝑖/𝑆(v(𝑛)). It then randomly samples an adjusted score in proportion to its value.

This selection algorithm has several useful features. First, it uses the Stop mechanism

whenever possible and is thus explicitly biased toward short meta-programs. Second, it bal-

ances exploration of relatively underexplored paths against exploitation of known good paths.

Third, the exploration bias is strongest when a subtree has never been visited (i.e. available

moves which have not yet been taken are always taken). Fourth, this bias weakens monoton-

ically with each subsequent visit, assuming that 𝑆(𝑥) monotonically decreases as 𝑥 increases.

This means that nodes which have been visited many times will only continue to be visited if

their subtrees contain high-scoring meta-programs relative to the alternatives. Fifth, because

the algorithm tracks only the 𝑁 top scores in each subtree, it is sensitive only to the best

individuals in a subtree, rather than to the mean individual. When 𝑁 is larger than one,

the algorithm does, however, have a limited ability to favor nodes with several high-scoring

individuals. For example, when each 𝑐𝑖 has been visited a moderate number of times, the

bias toward exploitation will tend to favor either nodes whose subtrees contain a single ex-

ceptionally good score or nodes whose subtrees contain several moderately good scores. In

sum, this selection algorithm provides a computationally efficient means of favoring nodes

which remain relatively underexplored or which have been shown to contain one or more

exceptional TRSs, increasingly favoring the latter as search progresses.

Another notable feature of HL’s MCTS algorithm is the way it explicitly represents

mechanism parameterizations in the structure of the search tree using using move groups

(Childs et al., 2008). If a mechanism has parameters, those parameters represents various

122

ways of modifying the behavior of the mechanism. Each distinct parameterization reflects a

different set of modifications. Some mechanisms have a fairly simple parameterization, re-

quiring only a single choice. For example, the DeleteRule mechanism only requires selecting

which rule will be deleted. In this cases, the overall DeleteRule mechanism is decomposed

into two steps. First, HL selects DeleteRule, as opposed to other possible mechanisms like

SampleRule, RegenerateRule, Stop, etc. After selecting DeleteRule, it then faces a deci-

sion between DeleteRule(1), DeleteRule(2), and so on. After choosing any one of these,

it returns to deciding among mechanisms: SampleRule, RegenerateRule, Stop, and so on.

As mechanism parameterizations grow more complex and multiple decisions must be made

in sequence, the complexity of the subtree representing the various decisions necessary to

complete the parameterization also grows. For a mechanism like SampleRule, which im-

poses no bound on the size of the sampled rule, this subtree can grow unboundedly large.

Subsequently, only the most valuable portions will ever be explored.

The overall effect is to decompose parameterized mechanisms and explicitly represent the

structure of the decisions necessary to construct a specific instantiation of the mechanism.

By explicitly representing the structure, HL can learn not only which mechanisms are useful,

and which parameterizations of that mechanism, but it can also learn which parts of that

parameterization are useful. It can learn, for example, that it is helpful to regenerate the

first rule but not the second, and that within the first rule, it is most helpful to regenerate

a specific subterm on the left-hand side.

Finally, HL’s MCTS implementation supports online learning. That is, it is capable of

updating its behavior as new data become available. To do so, it makes use of a second form

of pruning. When a new input/output pair becomes available, HL identifies the highest

scoring paths in its current search tree (the exact number is configurable, but this thesis

uses 100) which are still valid given the new data. A path can be invalidated if, for example,

it contains MemorizeAll, followed by a mechanism whose preconditions are no longer met

given the new data. It records these paths and then reconstructs the search tree to contain

just these paths, adding any new mechanisms made possible by the new datum, deleting

mechanisms whose preconditions are no longer met, running new simulations, and updating

the scores for each meta-program. For moderate numbers of retained nodes, this process is

123

fast yet still retains the most useful hypotheses.

4.3 Learning Objectives: simple, accurate, discoverable,

and well-formed

Chapter 2 argues that hackers and learners actively maintain and navigate a network of goals

rather than pursuing a single objective function. This section describes one particular reason

for which learners maintain multiple objectives. It specifically examines ways in which people

are often sensitive to good structure in suboptimal hypotheses, entertaining ideas they know

are deficient, perhaps flatly wrong, if they are beneficial in useful ways. It then relates this

to the hacker maxim of avoiding premature optimization and details the implementation

of these ideas in HL. HL scores hypotheses differently when building the search tree than

when deciding which, of all the hypotheses it’s found, to use for making predictions. It

specifically relaxes its objective during search to make it more likely to explore seemingly

suboptimal revisions that have the right overall structure. Moreover, the model favors TRSs

which provide a good fit to observed data and produce well-formed guesses for novel inputs

while being easy to find and relatively simple.

4.3.1 Abstract error maps

Entertaining hypotheses which are known to be wrong is a common feature of human think-

ing. It is in fact often the case that a learner understands not just that the hypothesis

is wrong but also which parts of it are wrong and why. Laura Schulz (2012a) calls these

detailed understandings of incorrect hypotheses abstract error maps and argues that they

are an essential guide during learning. To illustrate, she gives the following example of an

interaction she had with her daughter, Adele:

Adele (age 4): “Mommy, I know why they make you turn off your phone when the plane is
taking off.”
Laura: “Oh really? Why?”
Adele: “Because when the plane takes off it’s too noisy to talk on the phone.”

To anyone who has flown as an adult, this explanation is obviously incorrect in nearly all

124

its particulars. It is, however, also importantly right in several key respects: 1) it involves

phones and planes; 2) it posits a causal link between them; and 3) the causal link could

result in the airline asking passengers to power off their phones during takeoff. In these

respects it is a good explanation. It is true that the causal link is incorrect and even reverses

the direction of causality, but these details can be revised. The essential structure of the

hypothesis is right. Adele did not propose, for example, that we turn phones off on planes

because camels dislike cheese or because two and three makes five. Neither links phones and

planes, and the latter fails even to be causal. These are simply the wrong kinds of hypotheses

to consider and are hardly worth revising.

This knowledge of which parts of the hypothesis are useful and which need revision is

precisely what is included in an abstract error map12. Abstract error maps thus help to con-

strain the immediate goals and hypotheses we consider, making hypothesis-and-goal-driven

search a viable approach to learning. By making it clear where an explanation stands up and

where it needs further work, abstract error maps allow a learner to efficiently allocate their

effort, expending energy primarily on those aspects which are most in need of improvement.

Repeatedly updating such an error map allows a learner to iteratively improve a hypothesis

until arriving at a satisfactory explanation.

4.3.2 Avoiding premature optimization

Hackers operate over a complex space of complex objectives. First, their goals are complex.

Rather than being a function of just one or two dimensions—such as the tradeoff between

accuracy and description length that is common in Bayesian models of cognition (Ullman

et al., 2012; Ullman & Tenenbaum, 2020)—they routinely involve a much larger number

of dimensions. These include: classic normative constraints like description length and

accuracy (Chater & Vitányi, 2003; Baum, 2004); engineering considerations like efficient use

of energy, memory, and computation, as considered in resource rational analysis (Lieder &

Griffiths, 2020; Griffiths et al., 2015; Lewis et al., 2014); aesthetic considerations such as

12As Schulz notes, the map may include signals which are not about error per se, i.e. the gap between data
and explanation. It is instead intended to capture the general notion of our awareness of any place where
our hypotheses fail to meet our own subjective standards of explanatory adequacy.

125

elegance, clarity, and cleverness (Abelson et al., 1996); basic measures of utility as might be

considered as part of a naive utility calculus Jara-Ettinger et al., 2016; novelty (Lehman &

Stanley, 2011b, 2011a); fun; and a host of software engineering principles like modularity

and reusability (Martin, 2009; Thomas & Hunt, 2019). Second, hackers make use of multiple

objective functions. Rather than maintaining a fixed objective function, always seeking to

maximize the same combination of values, hackers make use of an entire space of possible

objectives, shifting between them based on context and past experience. Third, hackers want

to produce better code. They are interested in writing the best code possible. This may be

the most basic reason for hacking. They are therefore less interested in exploring the space

of all possible programs than they are in quickly finding the best programs in this space.

One important technique which hackers use to manage their movement through the space

of objectives is avoiding premature optimization (Knuth, 1973). The technique is typically

invoked to explain why a hacker might choose to deliberately ignore certain values, such as

making a program fast or short in order to more heavily value other things, like making a

program accurate or sufficiently general. She knows that her code is suboptimal in certain

important ways, but explicitly avoid fixing some aspects to focus on others. The hope is

that, in time, she will be able to broaden her values, incorporating additional dimensions

like speed or description length and thereby produce even better code. Trying to manage

a large number of values early in a program’s development, however, frequently leads to

code which scores poorly on all dimensions. This is by no means the same idea as abstract

error maps, but it is deeply related. In both cases, the agent maintains an awareness of

a hypothesis’ strengths and weaknesses and is willing to continue working with it despite

known weaknesses in hopes that future work will be able to resolve them.

There is a great deal more to say and to learn about the internally-motivated nature of

goals, the way that hackers actively manage which dimensions of value they are attempt-

ing to improve in their code at any given time, and the way they select goals in service

of these values. This is the work of another thesis, if not several others. The implemen-

tation of HL focuses on applying the considerations outlined above in the following ways.

First, it defines multiple distributions over programs, including a search-based prior over

meta-programs assessing ease of discovery, a grammar-based prior assessing TRS description

126

length, a trace-based likelihood over TRSs assessing fit to data and including a weak bias

toward computational efficiency, and a trace-based likelihood over TRSs assessing a TRS’s

ability to produce well-formed outputs for novel inputs. Second, it combines these vari-

ous distributions into a posterior assessment of a meta-program’s value using an extensible

framework based on mixture distributions and products of experts. Third, HL uses two

distinct but related objective functions depending on its current task and phase of learn-

ing. One guides search itself (i.e. the iterative expansion of the search tree), and the other

decides which meta-program, of all those observed in the search tree, to use as the basis

for making novel predictions. This latter objective basically acts like a Bayesian posterior

over meta-programs, while the former relaxes several terms to help HL entertain suboptimal

hypotheses that might be improved given additional search.

In classic two-player MCTS, the objective function is typically very simple, scoring sim-

ply whether a given pattern of play represents a win, loss, or draw for each player. It was

not therefore necessary to take a Bayesian approach to objectives in HL. The decision to do

so, however, brings a host of benefits, including: the ability to interpret scores as subjective

degrees of belief in the goodness of individual hypotheses, principled mechanisms for incor-

porating data-independent and data-dependent contributions as data accumulate, a deep

literature of formal tools, and a long history of successful application in cognitive science.

See Ullman and Tenenbaum (2020) for more detailed discussion of these issues.

4.3.3 A prior assessing discoverability

HL uses MCTS to construct a search tree. The path to a given non-leaf node represents a

partial meta-program, and the branches leaving it represent each possible way to continue

that meta-program. Taking a particular branch thus represents a choice, namely to continue

the meta-program in the fashion described by this branch as opposed to any of the others.

Each path then represents a series of choices, one for each node in the path. Some choices

might discriminate among dozens or even hundreds of options, while others might be trivial

choices with only a single option.

Assuming that each branch is chosen at random, the prior probability of a given meta-

program is simply the inverse product of the number of options leaving each non-terminal

127

node. Because HL selects each branch leaving a node at least once before selecting any a

second time, this prior also represents how easily HL can discover a meta-program. Meta-

programs requiring few choices, each of which presents just a few options, are easy to discover.

Meta-programs which are long or which contains choices among hundreds of options, by

contrast, are harder to discover.

We can formalize these intuitions by defining the prior probability, 𝑝(𝑀 |𝑇), of a meta-

program, 𝑀 ≡ 𝐻0.𝑀1.𝑀2. . .𝑀𝑚−1.Stop(), given a search tree, 𝑇 , with root TRS, 𝐻0, as

follows. Recall that parameterized mechanisms are represented by a series of branches in

the tree. Let path𝑇 (𝑀) be the series of branches in 𝑇 which represents 𝑀 , and siblings𝑇 (𝑏)

returns a set of containing all the branches sharing the same parent as 𝑏 in 𝑇 . Then:

𝑃META(𝑀 |𝑇) =
∏︁

𝑏∈ path𝑇 (𝑀)

1

|siblings𝑇 (𝑏)|
(4.1)

4.3.4 A prior assessing simplicity

Each meta-program 𝑀 in a search tree 𝑇 can be applied to the seed TRS, 𝐻0, represented

by the root to produce some output TRS 𝐻𝑀 . The search-tree prior in the previous section,

𝑃 (𝑀 |𝑇), describes the complexity of 𝑀 and thus provides an upper bound on how difficult

it is to find 𝐻𝑀 . It does not, however, tell us about the complexity of 𝐻𝑀 itself. It focuses on

the complexity of the generative process rather than the complexity of the final result. For

example, say HL had made two observations. In that case, 𝑀1 ≡ H0.MemorizeAll().Stop()

and 𝑀2 ≡ H0.MemorizeDatum(1).MemorizeDatum(2).Stop() would compile to the same

TRS (i.e. 𝐻𝑀1 = 𝐻𝑀2), but 𝑃 (𝑀1 |𝑇) > 𝑃 (𝑀2 |𝑇), because 𝑀1 has a simpler generative

process than 𝑀2. Moreover, after three additional observations, the complexity of 𝑀1 as a

generative process would remain the same, but 𝐻𝑀1 would contain three additional rules,

one for each new observation.

For a given TRS, 𝐻 = (Σ, 𝑅), we can, however, define a grammar-based prior, 𝑃 (𝑅 |Σ, 𝑝, 𝑤),

which is sensitive to the complexity of the rules of 𝐻 itself. Intuitively, this prior corresponds

to repeatedly flipping a coin to decide how many rules to include in 𝑅, and then using Σ

to sample each rule in turn. Like other grammar-based priors (e.g. Goodman, Tenenbaum,

128

Feldman, et al., 2008), it penalizes complexity and favors small sets of simple rules.

Formally, we can define 𝑃 (𝑅 |Σ, 𝑝, 𝑤) as follows. Let 𝑝 be the stopping probability and

𝑤 = (𝑤𝑐, 𝑤𝑓 , 𝑤𝑣, 𝑤𝑖) be a tuple containing the weights associated with constant operators,

function (non-constant) operators, reusing an existing variable, and inventing a new variable,

respectively:

𝑃TRS(𝑅 |Σ, 𝑝, 𝑤) = 𝑝(1 − 𝑝)|𝑅|
|𝑅|∏︁
𝑖=1

𝑃RULE(𝑅𝑖 |𝑤,Σ) (4.2)

Let 𝑤′ ≡ (𝑤𝑐, 𝑤𝑓 , 𝑤𝑣, 0). Then, for a given rewrite rule, 𝑙 ≈ 𝑟, where 𝜏 is the type associated

with 𝑙 ≈ 𝑟 and Γ is the typing environment generated by computing 𝜏 :

𝑃RULE(𝑙 ≈ 𝑟 |𝑤,Σ) = 𝑃TERM(𝑙 |𝑤, 𝜏,Γ,Σ)𝑃TERM(𝑟 |𝑤′, 𝜏,Γ,Σ) (4.3)

Then, for a given term 𝑚, assuming that [𝑚] returns a preorder traversal of 𝑚 and var(𝑥)

returns the set of variables observed in a sequence of atoms:

𝑃TERM(𝑚 |𝑤, 𝜏,Γ,Σ) =

|𝑚|∏︁
𝑖=1

𝑃ATOM([𝑚]𝑖|𝑤, 𝜏,Γ, var([𝑚]1...𝑖),Σ) (4.4)

Finally, for a given atom, 𝑎, and sequence of previously observed variables, 𝑣:

𝑃ATOM(𝑎 |𝑤, 𝜏,Γ, 𝑣,Σ) =
weight(𝑎, 𝑤, 𝜏,Γ, 𝑣,Σ)∑︀

𝑥∈Σ∪𝑣 weight(𝑥,𝑤, 𝜏,Γ, 𝑣,Σ)
(4.5)

where, assuming .
= represents type unification and Γ(𝑎) represents the type of 𝑎 given Γ:

weight(𝑎, 𝑤, 𝜏,Γ, 𝑣,Σ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if Γ(𝑎) ̸ .= 𝜏 or 𝑎 is an operator and 𝑎 /∈ Σ

𝑤𝑐 if 𝑎 ∈ Σ and arity(𝑎) = 0

𝑤𝑓 if 𝑎 ∈ Σ and arity(𝑎) > 0

𝑤𝑣 if 𝑎 ∈ 𝑣

𝑤𝑖 if 𝑎 is a variable and 𝑎 /∈ 𝑣

(4.6)

129

4.3.5 A likelihood assessing accuracy

Each TRS 𝐻 ≡ (Σ, 𝑅) defines a rewrite relation →𝑅. For a given input term 𝑡𝑖, 𝑡𝑖 →𝑠 𝑡𝑜

indicates that 𝑡𝑖 can be rewritten to 𝑡𝑜 in a single rewrite step. Depending on the rewriting

strategy and whether 𝑠 is nondeterministic, there may be several possible single step rewrites

for any given input. Moreover, it may be possible for the output of any of these rewrites

to serve as input to subsequent rewrites. These rewrite steps can be organized as a tree

called an evaluation trace. The root node represents the initial input, 𝑡𝑖, each outgoing

branch represents rewriting a particular subterm of 𝑡𝑖 according to a particular branch of a

particular rewrite rule in 𝑅, and the corresponding child node represents the outcome of this

rewriting step.

Given a particular input/output pair (𝑖*, 𝑜*), HL assesses the likelihood of using 𝐻 to

rewrite 𝑖* to 𝑜* using the following generative model. It first flips a coin with weight 𝑝.

If the coin flip succeeds, it stops and returns 𝑖* as the output. Otherwise, it considers all

possible rewrites of 𝑖*, chooses one at random, and makes the output of that rewrite its new

input. It repeats this process until producing an output. This generative process defines a

distribution over input/output pairs, written 𝑃TRACE(𝑛 | 𝑖,𝐻), associating a probability with

every node, 𝑛, in the evaluation trace rooted at 𝑖*. Outputs which are reached quickly and

which compete with few alternative outputs have a high probability, while those which take

many rewrite steps or for which certain steps could have resulted in many distinct rewrites

have a correspondingly lower probability. Depending of the setting of 𝑝, this distribution

also favors earlier outputs over later outputs, a weak efficiency bias.

It would be simple to convert this generative process to a likelihood by summing up

the probability of each node 𝑛 for which the associated output 𝑜𝑛 = 𝑜*. This likelihood,

however, assigns no partial credit. If 𝑜𝑛 is not exactly equal to 𝑜*, 𝑛 contributes nothing to

the likelihood. HL resolves this problem by amending the generative model above. After

producing an output, it then assumes that the output is probabilistically corrupted. In

the case of the list function domain, it assumes elements are inserted, deleted, or randomly

replaced, each with a certain probability according to the algorithm described in Kashyap

and Oommen (1984). For a given observed output, 𝑜, target output, 𝑜*, and parameterization

130

𝜃, we write this distribution as 𝑃STRING(𝑜 | 𝑜𝑛, 𝜃). In combination, with 𝑝TRACE, the resulting

distribution then allows each node in the trace to contribute to the likelihood based on the

combined cost of reaching the node 𝑛 and corrupting 𝑜𝑛 into 𝑜*.

HL defines the likelihood of a set of input/output data, 𝐷, 𝑃 (𝐷 |𝐻, 𝜃) as follows, where

1o(𝑜𝑛) is an indicator function testing whether 𝑜𝑛 = 𝑜, and Trace𝐻(𝑖) is an evaluation trace

rooted at 𝑖:

𝑃ACC(𝐷 |𝐻, 𝜃) =
∏︁

(𝑖,𝑜)∈𝐷

∑︁
𝑛∈Trace𝐻(𝑖)

1o(𝑜𝑛)𝑃TRACE(𝑛 | 𝑖,𝐻)𝑃STRING(𝑜𝑛, 𝑜, 𝜃) (4.7)

Because the trace may be unboundedly large, HL artificially limits the depth and maximum

number of nodes in the trace. Both parameters are configurable.

4.3.6 A likelihood assessing well-formedness

In the online learning experiments described in Chapters 5 and 6, learners are asked to make

a series of predictions about list function problems. For each problem, they are given an

initial input and asked to predict its output. After making their prediction, they are given

the correct output, shown a novel input, and asked to make another prediction. At all times,

the correct input/output pairs for previous trials remain on screen as well as a single novel

input. The learner may or may not have a strong hypothesis about how the list function

concept will apply to this particular novel input, but they do know at least one thing. They

know that it will apply and produce a literal output list. It will not produce a number, nor

a partially evaluated program, nor anything else except a literal list. Given the sometimes

rich structure of the input lists, not all possible inputs are guaranteed to produce literal

outputs. The inputs provided during the experiment, however, are always guaranteed to

produce meaningful outputs. This knowledge allows the learner to rule out any hypothesis

which fails to produce a literal output list for the novel input. It therefore provides a reliable

test about a hypothesis’ ability to produce well-formed outputs and acts as a form of query-

guided search (Chu et al., 2019). The signal is admittedly weak—it cannot tell the learner

whether a given hypothesis will produce correct outputs—but it is nonetheless helpful in

131

constraining search.

Intuitively, HL can use this information to construct a very simple likelihood function fa-

voring hypotheses that satisfy this well-formedness constraint. For each TRS, 𝐻, it evaluates

the novel input, 𝑖, to construct a trace. Each node, 𝑛, contributes its probability under the

trace weighted according to whether it is a literal list. For a set of inputs 𝐼, HL formalizes

this likelihood as follows:

𝑃WF(𝐼 |𝐻,𝛼) =
∏︁
𝑖∈𝐼

∑︁
𝑛∈Trace𝐻(𝑖)

LIT𝛼(𝑜𝑛)𝑃TRACE(𝑛 | 𝐼,𝐻) (4.8)

where

LIT𝛼(𝑜) =

⎧⎪⎨⎪⎩1 − 𝛼 if o is a literal list

𝛼 otherwise
(4.9)

4.3.7 Two objectives for HL

In the list function experiments reported in Chapters 5 and 6, HL makes use of two different

objective functions. The first is used during search: it is computed during the Simulation

step and used during the Selection step. The second is used after search when deciding

which, of all known meta-programs, to select, compile into a TRS, and use as the new LOT.

This LOT is then used to make predictions on novel inputs. This is a first step toward

a model which adopts objective functions that allow it to consider and revise suboptimal

hypotheses in a style similar to the way people deploy abstract error maps during learning

or the way in which hackers avoid premature optimization.

HL uses four distinct probability distributions to assess the value of a meta-program—a

prior distribution over meta-programs favoring discoverability, a prior distribution over TRS

rules favoring simplicity and generalization, a likelihood over input/pairs favoring accuracy

and efficiency, and a likelihood over lone inputs favoring well-formed guesses. Table 2.1

suggests that future hacker-like models of learning may want to include many additional

terms. Bayesian frameworks for learning in the LOT, however, most commonly feature

posteriors combining just two distributions: a prior favoring expressions simplicity and a

132

likelihood favoring accuracy.

HL resolves this tension by combining distributions using tools from probabilistic logic

in the following way (Pearl, 1988).

During prediction, HL favors meta-programs that produce a short TRS that accurately

explains previously observed input/output pairs and makes well-formed guesses about novel

inputs. All else being equal, it also favors short meta-programs. It is valuable to select a short

TRS because accurate predictions require hypotheses that generalize well. A hypothesis is

more likely to generalize if it is short, because it has less capacity for memorizing specific

exceptions. It is also valuable to have a hypothesis which fits the previously observed data

as well as possible, and it is necessary that the hypothesis produce a well-formed guess for

novel inputs. Hypotheses which score poorly on either of these two criteria hardly count as

solution at all. All else being equal, efficiency considerations also suggest favoring hypotheses

which are easy to find. Because search has ended, however, it is senseless to favor efficiency

at the cost of probable generalization. So, HL uses the following objective during prediction

for data, 𝐷, and meta-program, 𝑀 :

𝑃PRED(𝑀 |𝐷,𝑇, 𝑝, 𝑤, 𝜃) =

𝑃TRS(𝑀 | 𝑝, 𝑤) · 𝑃ACC(𝐷 |𝑀, 𝜃) · 𝑃WF(𝐷 |𝑀, 0)) · 𝑃META(𝑀 |𝑇)
(4.10)

The product of 𝑃WF and 𝑃ACC form an unnormalized likelihood, where 𝑃WF is parameterized

to act as a hard bias toward well-formedness (i.e. 𝛼 = 0). The product of 𝑃TRS and 𝑃META

acts as a prior. Both products are a sort of noisy-and (Pearl, 1988). The likelihood favors

hypotheses which are accurate and produce well-formed guesses on novel inputs. The prior

favors hypotheses with simple meta-programs and simple TRSs. In cases where multiple

TRSs are equally simple, this prior favors the TRS generated by the simplest meta-program13.

Their product is then proportional to a Bayesian posterior favoring simple meta-programs

that generate TRSs which are also simple, accurate, and generate well-formed guesses. The

13This all-else-being-equal property only holds when all else is truly equal. Another approach would be
needed to select, say, the simplest meta-program which generates the simplest TRS. This might be possible,
for example, with an appropriately tuned softmax function, though exploring this and other formalizations
remains future work

133

overall effect is to select the simplest meta-program leading to the best TRS.

HL relaxes both the prior and the likelihood during search. It relaxes the prior by

favoring hypotheses which either have a short meta-program or compile to a short TRS.

This is accomplished using a noisy-or operator. A short TRS is likely to generalize rather

than memorize, while a short meta-program is fairly easy to find and compile into a TRS.

Ideally, hypotheses score well on both dimensions. During search, however, we may not want

to rule out hypotheses which score poorly on one of these dimensions. It is possible that

a long TRS with a short meta-program can be shortened by applying a small number of

additional learning mechanisms. Also, a short TRS with a long meta-program has already

been discovered. The effort required to find it should not count against it, because the effort

has already been expended. It relaxes the likelihood by softening the hard bias toward well-

formedness (i.e. 0 < 𝛼 ≤ 1). This is useful because the search tree is built iteratively and

takes the Stop mechanism whenever possible. It thus accumulates information about the

opening mechanisms of meta-programs much more rapidly than it does for later occurring

mechanisms. It is also often helpful in the first few steps to memorize and refactor the

data. During this time, hypotheses typically do not generalize. Being relatively insensitive to

generalization during search allows HL to persist through this phase and discover refactorings

that do generalize well. It is otherwise led astray by hypotheses are short, easy to find and

which generalize trivially but are highly inaccurate. HL thus uses the following objective

during search, where ⊕ is the noisy-or operator:

𝑃SEARCH(𝑀 |𝐷,𝑇, 𝑝, 𝑤, 𝛼, 𝜃) =

(𝑃TRS(𝑀 | 𝑝, 𝑤) ⊕ 𝑃META(𝑀 |𝑇)) · 𝑃ACC(𝐷 |𝑀, 𝜃) · 𝑃WF(𝐷 |𝑀,𝛼)
(4.11)

To better illustrate how these two objectives work in tandem, consider the progression

from the TRS 4.1 to TRS 4.9. TRS 4.1 is an empty TRS containing no rules and constructed

by a meta-program which has not yet applied any learning mechanisms. 𝑃TRS and 𝑃META

are thus high. It thus cannot rewrite a query like F [1, 2, 3] and so returns the same term

as output, making it both inaccurate and unable to produce well-formed guesses. From a

prediction standpoint, it thus scores well in terms of having a short meta-program and short

134

TRS but scores poorly on accuracy. Moreover, its inability to produce well-formed guesses

gives it an overall score of 0. During search, 𝑃TRS and 𝑃META remain high, so their noisy-or

is also high, and 𝑃ACC remains low. 𝑃WF, however, being only a soft bias during search, is no

longer 0. Thus, the overall score suggests that the hypothesis could be extended by future

revisions. This is good, seeing as its the only available hypothesis at the start of search.

After memorizing the data in TRS 4.3, progress appears mixed. 𝑃META remains high,

though 𝑃TRS is lower because the TRS now has four complex rules. More importantly, these

rules perfectly predict the data seen so far, so 𝑃ACC now has a high score. Memorization,

however, will not produce well-formed guesses, so 𝑃WF remains 0. From a prediction stand-

point, the TRS thus continues to have an overall score of 0. From a search perspective,

however, TRS 4.3 is much better than TRS 4.1. The noisy-or of 𝑃TRS and 𝑃META remains

relatively unchanged, as does 𝑃WF, but 𝑃ACC is now also high. The overall search score then

suggests that TRS 4.3 is a good candidate for extending in future revisions.

A couple revisions later, TRS 4.5 appears decidedly worse under both objectives. 𝑃ACC

remains high, but two additional parameterized learning mechanisms lower 𝑃META. A much

more complex set of rules means 𝑃TRS is also very low. Moreover, none of the learning

mechanisms have introduced any form of abstraction so 𝑃WF remains 0. The TRS thus

continues to have an overall prediction score of 0. The search score is also worse for the

same reasons. Both 𝑃TRS and 𝑃META are lower, so their noisy disjunction is also lower. The

overall search score is non-zero and so does not disqualify TRS 4.5 from future revision, but

it looks less appealing than either TRS 4.3 or TRS 4.4.

Everything changes, however, by the time search reaches TRS 4.9. For the prediction

score, 𝑃META is significantly worse, but 𝑃ACC remains high, 𝑃TRS improves dramatically, and

the hard bias of 𝑃WF is now non-zero. The meta-program for TRS 4.9 is one of the shortest

meta-programs with this combination of factors, so it is also among those with the highest

overall prediction scores. The search score is also much better. Because 𝑃TRS is much higher,

the noisy-or with 𝑃META is also better. Both 𝑃ACC and 𝑃WF are also high. Not only is TRS

4.9 a good final solution, but it is a great place to consider extending if time remains for

additional search. Entertaining TRS 4.5, despite its flaws, was necessary for reaching this

significantly better solution.

135

The two objectives thus work together to guide different kinds of decision making through-

out learning. The prediction objective fails to make allowances for things later revisions

might fix, which is necessary during search. The search objective makes these allowances,

but is too relaxed about features critical to making good predictions. Together, however,

they allow HL to delay certain kinds of judgment while actively exploring the hypothesis

space, bringing them online only when it becomes time to decide which hypothesis, of all it

has considered, is most likely to generate useful predictions.

4.4 Conclusion

HL defines a model of inductive learning inspired by the child as hacker. It is aimed at

structurally rich domains like the list functions described in Chapter 3 and takes steps toward

incorporating hacker-like insights in its approach toward mental representations, objective

functions, and learning mechanisms. This enables HL to model learning as the iterative

development of an entire LOT. It is also sensitive to multi-part objective functions that vary

based on the task at hand. By using a variety of structure-sensitive learning mechanisms, HL

dissociates the complexity of a program from the complexity of the generative process that

creates that program, and is able to rapidly discover certain kinds of complex LOTs that,

despite their length, are among the simplest explanations providing an accurate and general

account of the data. Chapter 5 reports the results of a large-scale human concept learning

experiment in the domain of list functions, and Chapter 6 describes how well HL explains

human performance in this experiment relative to several alternative models of learning as

programming.

136

Chapter 5

Human learning of list functions:

Structural sources of difficulty

5.1 Introduction

Human learning is pervasively rich and complex. It is sometimes swift and powerful (Tenen-

baum et al., 2011) and other times slow and labored (Carey, 2009; Barner, 2017). Variation

among learning mechanisms is the rule rather than the exception (Siegler, 1996), and these

mechanisms constantly adapt to new data (Siegler & Jenkins, 1989). The domains about

which people learn span the literal cosmos, including: subatomic particles, galactic super-

clusters, the origins of the universe, and the end of time. It also encompasses everything

in between, especially everyday, commonsense abilities such as navigating an environment,

communicating and collaborating with others, and performing daily routines. The motiva-

tions and goals of learners are equally diverse, as are their outcomes. Some remain novices,

while others excel to world-class performance and beyond, advancing the collective repertoire

of human accomplishment (Ericsson, 2006). Moreover, much of this learning occurs across

multiple domains simultaneously and informally, as part of the daily fabric of human life.

Studying this rich texture of cognitive development has led to a number of key hypotheses

about learning. Several of these hypotheses work together to provide computational cogni-

tive science with—for lack of a better term—a standard approach to learning difficulty1.
1The name “standard approach” is not intended to imply that these hypotheses sit on equal footing with,

137

In keeping with the rest of this thesis, we frame the discussion of this standard approach

in terms of learning over a system of compositional parts which behave like a mental lan-

guage or language of thought (LOT; Fodor, 1975). We specifically focus on the learning as

programming paradigm introduced in Chapter 1, which treats the LOT as something like a

probabilistic programming languages and learning as something like programming

The first key idea in this standard approach is that the amount of information required

to uniquely specify a concept plays a key role in explaining its learnability. Specifically,

learners prefer the simplest concepts that will explain the data, namely those requiring the

least amount of information to identify. There are strong normative arguments in favor of

simplicity as a guiding principle for learning (Chater & Vitányi, 2003; Baum, 2004), not

the least of which is that simpler explanations have less capacity for memorization and

overfitting and are thus more likely to generalize. The amount of information required to

specify a concept is deeply connected with the size of the hypothesis space and the methods

which a learners uses to explore hypotheses. This idea has been formalized and studied

under multiple names, including Kolmogorov complexity (Kolmogorov, 1963), Solomonoff

induction (Solomonoff, 1964a, 1964b), the minimum description length principle (Grünwald,

2007), information theory (MacKay, 2003), algorithmic information theory (Grünwald &

Vitányi, 2008), and probably approximately correct (PAC) learning (Valiant, 1984; Kearns &

Vazirani, 1994). In a Bayesian setting, the drive for simplicity can be realized through a prior

distribution over hypotheses which penalizes a hypothesis in proportion to its complexity

(Jefferys & Berger, 1992). Bayesian models of learning in the LOT (Ullman & Tenenbaum,

2020) then balance this prior against a likelihood favoring a good fit to observed data. The

overall effect is to favor hypotheses which are both simple and accurate. All these methods

formalize Occam’s Razor, suggesting that, all else being equal, learners will eventually settle

on the simplest explanation of the data because, all else being equal, simpler explanations

are better.

A growing body of computational and empirical work, however, supports an even stronger

for example, the much more established standard model in physics. It is instead to communicate that these
hypotheses form a key part of the substrate on which modern computational cognitive science is built. They
are part of the basic worldview which many model builders bring to understanding learning, specifically to
understanding what makes learning easy or hard.

138

claim: knowledge that can be encoded with a short expression in the LOT is learned more

easily than knowledge requiring a long expression. This forms the second key idea of the

standard approach. Feldman (2000; 2003), for example, has shown this convincingly for

Boolean concepts (cf. Lafond et al., 2007), and the idea has formed the basis for many em-

pirically successful computational models of concept learning, including subsequent models

of learning for Boolean concepts (Goodman, Tenenbaum, Feldman, et al., 2008; Piantadosi

et al., 2016), counting procedures (Piantadosi, 2011), graph structures (Kemp & Tenenbaum,

2008), and scientific theory learning (Kemp et al., 2010; Ullman et al., 2012). Given the com-

plexity of their LOTs and the infeasibility of considering all possible concepts, such models

rely on algorithms which closely link learning with description length, such as exhaustive

search based on enumeration or stochastic search based on random sampling. Their findings

suggest that learners not only prefer simple solutions, but that the simplicity of a solution

strongly determines how easily a concept can be learned at all.

This standard approach, however, cannot be easily reconciled with findings that paint a

richer picture of learning. It argues for a strong connection between learning and description

length in the LOT. The more compactly a concept can be expressed in the LOT, the more

easily it can be learned. As discussed in previous chapters, however, learners develop entirely

new conceptual systems in which totally new symbols are defined not in terms of some fixed

set of preexisting primitives, but in terms of their overall conceptual role. They are keenly

aware of the strengths and weaknesses of their hypotheses and apply constructive thinking

in highly structured goal-and-hypothesis-driven searches. They are sensitive to many values

and goals and appear to move fluidly between them.

The child as hacker hypothesis developed in this thesis emphasizes the diversity of the

values and mechanisms which humans bring to bear during learning. It specifically suggests

that, like hackers (Fowler, 2018; Abelson et al., 1996), learners may make use of a wide variety

of context-specific values and learning mechanisms in the development of domain-specific

languages. For hackers, these values and mechanisms are often highly targeted, applicable

only to particular kinds of problems. The mechanisms frequently manipulate programs in

highly structured ways, acting essentially as program-changing programs. Hackers maintain

a catalog of these mechanisms and understand the conditions in which they are likely to be

139

helpful. They also understand the relationships between these mechanisms and the many

dimensions of value they might affect. If human learning mechanisms operate in hacker-like

ways and are sensitive to structure in observed data, learning itself might be strongly affected

by even small amounts of data. As a result, human learners might deviate significantly from

models which explain learning primarily as a function of description length in the LOT.

People may instead be able to learn much more quickly than these models would predict,

making use of structure-sensitive methods to narrow the space of hypotheses and rapidly

discover long programs that are, nonetheless, the simplest explanations of the data.

In this chapter, we present a large-scale human concept learning experiment that tests

these hypotheses in human learners. We extend preliminary work in (Rule et al., 2018)

to develop a benchmark set of 250 list transformation concepts and assess their learnability

through a large scale online behavioral experiment. We encode each concept as a program in a

rich, domain-appropriate model LOT and analyze learning performance in terms of a variety

of syntactic and semantic features. These features include alphabet size and three measures of

description length, all of which are strongly connected to the simplicity of each program. We

also include factors encoding the use of conditional or recursive reasoning, the use of counting

knowledge, argument structure, and visibility—a concept we introduce as a measure of how

transparently each symbol in a program is encoded in its associated input/output data. We

find that while description length has some predictive value, the contribution of each symbol

is heavily modulated by its visibility. Moreover, language size has no significant effect in our

data, while more semantic features significantly impact overall performance. These results

show that humans are strongly sensitive to structural cues of semantic content in observed

data and are able to use them to improve learning. We argue that humans may use learning

mechanisms which—unlike enumeration or random sampling—decouple the complexity of

learning a concept from the complexity of that concept’s representation in the LOT.

5.2 Method

Participants were told that they were going to play a guessing game with the computer.

The game was divided into rounds, and in each round, the computer would devise a rule

140

Figure 5-1: A sample display from the list transformation paradigm used in the behavioral
experiment. Previous trials remain onscreen, with a record of the input, output, participant
response, and whether the response was correct. The concept is to remove the first instance
of the largest element in the list.

for transforming a list of numbers given as input into some output list of numbers. To help

participants learn about the rule, the computer would ask a series of questions. In each,

the computer would show a novel input list and ask the participant to predict the output

associated with the input. Participants were told that their job was to guess the rule and

use it to correctly respond to as many of the computer’s questions as possible.

After each prediction, the computer revealed the correct output. The input/output pair

remained on screen for the rest of the experiment. We thus created an online learning

paradigm in the style of Piantadosi et al. (2016) and Rule et al. (2018), in which learners

had access to correct information associated with all past trials and could review it at any

time during learning (Figure 5-1). This paradigm also provided us with a trial-by-trial record

of learners’ generalizations.

5.2.1 Participants

498 people participated in the experiment, hosted on Amazon Mechanical Turk using Psi-

Turk. While we attempted to define highly learnable concepts, this is still a difficult exper-

141

Type Description

t1, t2,. . . Universally quantified type variables
Int Integer values
Bool Boolean values
[X] List of type X (e.g. [Int] for a list of integers)
X � Y Arrow type representing a function from X to Y. All functions are cur-

ried (i.e. arrows are chained to represent functions of multiple arguments).
E.g. Int � [Int] � Bool takes an Int and a list of Ints and returns a Bool.

Table 5.1: The Hindley-Milner typesystem used in the concept language.

iment. After reviewing pilot data, we excluded participants who completed the experiment

in less than 20min, with fewer than 10 correct responses, or with more than 20 identical

responses. We therefore excluded 106 participants, analyzing data from the remaining 392.

Participant age for this group ranged from 18.6yrs to 69.4yrs (median: 39.2yrs), with 253

males and 132 females. We did not actively assess language skills but requested that partic-

ipants speak English fluently.

5.2.2 Materials

Both humans and models were tested on a set of 250 concepts (Appendix A). Each concept

was drawn from a rich domain-specific language based on a typed lambda calculus. Lambda

calculus is a Turing-complete (i.e. computationally universal) formalism that models compu-

tation as function abstract and application (Barendregt et al., 1984). It plays a fundamental

role in computer science and frequently appears in LOT-based computational models of

learning (e.g. Piantadosi, 2011; Liang et al., 2010; Zettlemoyer & Collins, 2005). See page 68

and following for more discussion of the lambda calculus and an example computation. We

equip our language with a Hindley-Milner typesystem (Hindley, 1969; Milner, 1978; Pierce,

2002) which provides syntactic guarantees on the semantic correctness of programs. The

type system makes it impossible to construct programs which are semantically non-sensical

(i.e. take the second element of the number 3) while still allowing the full range of seman-

tically meaningful programs. Table 5.1 describes the type system, Table 5.2 describes the

primitives, and Table 5.3 gives several example programs for concepts used in the experiment.

142

Usage Type Description

(𝜆 x body) t1� t2� (t1� t2) lambda abstraction; binds x for use in body
0, 1, 2,. . .,99 Int natural numbers
true, false Bool Boolean values
[] [t1] empty list
(+ x y) Int� Int� Int add x and y
(- x y) Int� Int� Int subtract y from x
(* x y) Int� Int� Int multiply x and y
(/ x y) Int� Int� Int quotient of x divided by y
(% x y) Int� Int� Int remainder of x by y
(< x y) Int� Int� Bool true if x is greater than y
(> x y) Int� Int� Bool true if x is less than y
(is_even x) Int� Bool true if x is even
(is_odd x) Int� Bool true if x is odd
(and x y) Bool� Bool� Bool Boolean conjunction of x and y
(or x y) Bool� Bool� Bool Boolean disjunction of x and y
(not x) Bool� Bool Boolean negation of x
(if p a b) Bool� t1� t1� t1 a if p is true, else b
(== x y) t1� t1� Bool true if x and y are structurally identical
(singleton x) t1� [t1] list with a single element, x
(repeat x n) t1� Int� [t1] list repeating x n times
(range i j n) Int� Int� Int� [Int] list of numbers from i to j, inclusive, counting by n
(cons x xs) t1� [t1]� [t1] prepend x to xs
(append xs x) [t1]� t1� [t1] append x to xs
(insert x i xs) t1� Int� [t1]� [t1] insert x at index i in xs
(concat xs ys) [t1]� [t1]� [t1] concatenate xs and ys
(splice ys i xs) [t1]� Int� [t1]� [t1] insert ys into xs, beginning at index i
(first xs) [t1]� t1 first element of xs
(second xs) [t1]� t1 second element of xs
(third xs) [t1]� t1 third element of xs
(last xs) [t1]� t1 last element of xs
(nth i xs) Int� [t1]� t1 element i of xs
(replace i x xs) Int� t1� [t1]� [t1] replace element at index i in xs with x
(swap i j xs) Int� Int� [t1]� [t1] swap elements at indices i and j in xs
(cut_idx i xs) Int� [t1]� [t1] remove element at index i from xs
(cut_val x xs) t1� [t1]� [t1] remove first occurrence of x from xs
(cut_vals x xs) t1� [t1]� [t1] remove all occurrences of x from xs
(drop n xs) Int� [t1]� [t1] remove first n elements from xs
(droplast n xs) Int� [t1]� [t1] remove last n elements from xs
(cut_slice i j xs) Int� Int� [t1]� [t1] remove elements at indices i to j, inclusive from xs
(take n xs) Int� [t1]� [t1] first n elements of xs
(takelast n xs) Int� [t1]� [t1] last n elements of xs
(slice i j xs) Int� Int� [t1]� [t1] sublist of xs from indices i to j, inclusive
(fold f acc xs) (t2� t1� t2)� t2� [t1]� t2 iteratively accumulate elements of xs into acc via f
(foldi f acc xs) (Int� t2� t1� t2)� t2� [t1]� t2 like fold, but p is also given the element’s index
(filter p xs) (t1� Bool)� [t1]� [t1] keep only elements of xs for which p is true
(filteri p xs) (Int� t1� Bool)� [t1]� [t1] like filter, but p is also given the element’s index
(count x xs) (t1� Bool)� [t1]� Int count occurrences of x in xs
(find p xs) (t1� Bool)� [t1]� [Int] returns indices of xs for which p is true
(map f xs) (t1� t2)� [t1]� [t2] apply f to each element of xs
(mapi f x) (Int� t1� t2)� [t1]� [t2] like map, but f has access to each element’s index
(group f xs) (t1� t2)� [t1]� [[t1]] group elements, x, of xs based on the key, (f x)
(is_in xs x) [t1]� t1� Bool true if x is in xs
(length xs) [t1]� Int length of xs
(max xs) [t1]� Int largest element in xs
(min xs) [t1]� Int smallest element in xs
(product xs) [Int]� Int product of elements in xs
(sum xs) [Int]� Int sum of elements of xs
(unique xs) [t1]� [t1] unique elements of xs
(sort f xs) (t1� Int)� [t1]� [t1] sort elements, x, of xs by the output of (f x)
(reverse xs) [t1]� [t1] xs in reverse order
(flatten xs) [[t1]]� [t1] concatenates the list of lists, xs, into a list
(zip xs ys) [t1]� [t1]� [[t1]] join xs and ys into a list of two-element lists

Table 5.2: The primitives from which the concepts were formed

143

Program Description

(𝜆 x (singleton 5)) the list [5]
(𝜆 x x) identity function
(𝜆 x (take 2 x)) first two elements of xs
(𝜆 x (singleton (index (first x) x))) element 𝑁 of x, 𝑁 = element 1
(𝜆 x (concat (repeat (third x) 3) (drop 3 x))) element 3 replaces elements 1 & 2
(𝜆 x (map (𝜆 y (+ y 1)) x)) increment every element by 1
(𝜆 x (filter (𝜆 y (== 1 (count (𝜆 z (== y z)) x))) x)) remove repeating elements

Table 5.3: Example concepts in the model LOT.

84 of the concepts exclusively used the numbers 0–9, while the rest also included 10–99. All

concepts were manually generated with the intention of capturing broad variation both in

the kinds of algorithmic reasoning required and in their difficulty for human learners.

To generate input/output pairs for each concept, we randomly generated one million sets

of 11 input/output pairs and selected the best according to a per-concept custom scoring

function. Both input and output lists were restricted to contain 0 to 15 elements. The per-

concept scoring function always favored variance in the lengths of the inputs and outputs,

variance in the elements of the lists, a high number of unique outputs, and a low number

of examples in which the input and output were identical. Each was then also customized

to favor features relevant to the given concept. For example, a concept indexing the third

element might favor inputs with three or more elements, while a concept using the first

element as an index might favor lists in which the first element was less than or equal to the

length of the list. After selecting a set of examples, we then generated five thousand random

orderings and selected the one with the highest score based on: applying the per-concept

scoring function to the first five pairs, applying the per-concept scoring function to the last

six pairs, whether the input differed from the output in the first example, and the distance

between 5 and the length of the first input.

5.2.3 Procedure

Participants began by reviewing a set of instructions detailing the experimental design and

completing a short quiz verifying their understanding of the task. They then completed 110

trials of the list-routines task—10 blocks of 11 trials each. In each trial, participants were

144

10

30

50

70

90

M
ea

n
P

er
fo

rm
an

ce
 (

%
)

0
1
2
3
4
5
6
7
8
9

10
11

c1
02

c1
70

c1
21

c0
45

c0
72

c1
51

c0
80

c0
61

c1
89

c0
50

c0
48

c1
47

c1
20

c1
27

c1
00

c1
45

c0
79

c0
43

c0
38

c0
42

c2
23

c1
37

c2
38

c1
08

c1
26

c1
87

c0
22

c2
12

c1
01

c0
21

c1
05

c0
41

c0
70

c0
52

c0
44

c1
90

c0
37

c2
22

c1
07

c0
11

c1
04

c1
92

c1
82

c0
06

c0
46

c1
06

c1
14

c0
93

c1
95

c1
96

c0
95

c0
16

c2
24

c1
16

c1
40

c0
49

c0
71

c1
61

c0
68

c1
03

c0
01

c0
90

c0
97

c1
42

c0
91

c0
34

c2
44

c1
71

c1
72

c0
62

c0
96

c0
81

c1
09

c0
02

c1
32

c1
53

c0
51

c2
25

c0
67

c1
12

c0
30

c1
49

c1
48

c0
17

c0
92

c0
77

c0
98

c2
48

c1
99

c0
07

c1
76

c0
66

c0
53

c0
47

c0
64

c0
78

c1
19

c1
35

c1
98

c2
19

c0
75

c1
77

c0
25

c1
25

c2
11

c0
87

c0
13

c0
69

c1
17

c2
28

c1
97

c0
65

c1
56

c1
10

c2
33

c0
03

c2
30

c1
22

c0
20

c2
35

c1
57

c1
85

c2
13

c1
84

c1
55

c0
82

c2
31

c0
99

c2
47

c0
08

c0
55

c0
29

c1
68

c0
09

c1
33

c1
46

c0
04

c2
40

c2
39

c2
46

c1
38

c0
18

c0
12

c2
32

c0
94

c0
86

c1
93

c0
56

c0
28

c2
20

c2
41

c0
60

c1
69

c0
57

c1
50

c0
33

c2
18

c0
14

c1
36

c0
83

c0
19

c2
03

c1
15

c2
07

c0
88

c0
40

c0
85

c1
11

c0
73

c0
27

c2
34

c1
65

c1
91

c0
26

c0
59

c0
74

c1
73

c1
75

c2
04

c0
31

c2
36

c0
54

c2
27

c0
24

c2
00

c0
10

c1
23

c0
23

c1
94

c2
45

c0
32

c0
58

c1
74

c2
29

c1
62

c0
39

c1
81

c1
63

c1
54

c1
66

c0
84

c2
49

c1
18

c1
52

c2
37

c2
43

c1
88

c1
39

c0
36

c2
01

c2
17

c0
05

c2
09

c0
63

c1
41

c0
89

c1
24

c2
16

c1
43

c2
15

c1
44

c1
28

c2
08

c0
35

c2
14

c1
30

c1
59

c2
05

c0
76

c2
50

c1
86

c2
42

c1
60

c1
67

c2
02

c1
29

c2
21

c1
31

c1
80

c0
15

c1
79

c2
26

c1
34

c1
64

c1
78

c1
13

c2
06

c2
10

c1
58

c1
83

Concept

To
ta

l C
or

re
ct

Figure 5-2: (Top): Mean accuracy (y-axis) on each concept (x-axis) in descending order of
mean accuracy. Error bars are bootstrapped 95% CIs. Concepts examined in Chapter 5’s
model comparison are marked in blue; (Bottom): For each concept (x-axis), the percentage
of participants with each possible number of correct responses (y-axis). Color varies from
white (0%) to black (100%).

shown an input list and asked to predict the output according to the rule they thought the

computer was using to transform inputs into outputs. Each block tested a different concept.

Because each participant completed 10 blocks, we collected data from about 16 participants

for each concept. The experiment concluded with a brief demographical survey.

The ten concepts were sampled uniformly from the total pool of 250 concepts being

tested, and their order was also randomized. The paradigm encouraged online learning: for

trial 𝑁 + 1 of a block, participants saw the correct inputs and outputs from the previous 𝑁

trials and were able to use them, and their past thinking about the function, to inform their

prediction. At the conclusion of each block, participants were asked to describe in words the

rule they thought the computer had been using.

Participants were paid a flat fee of $7.50 for participating plus an additional $0.01 for

each correct response, with a median compensation of $8.00 for a median 72min of work.

Participants found the task difficult but engaging with a mean self-reported difficulty rating

of 4.9 and a mean self-reported engagement rating of 5.9, both on a 7-point Likert scale.

145

0.00

0.01

0.02

0.03

0 10 20 30 40 50 60 70 80 90 100
Mean Accuracy (%)

D
en

si
ty

Figure 5-3: Histogram (bars) and Gaussian kernel density estimate (curve) of mean concept-
level performance (x-axis) by participant, including median (black dashed line) with boot-
strapped 95% CI (gray region), and individual participants (rug plot).

5.3 Results

The top portion of Figure 5-2 plots the mean accuracy across subjects for each concept. It

depicts, on average, how accurately all the people who completed a given concept responded

to all trials for that concept. The figure shows wide variation in performance across concepts.

Nearly all participants learn the identity function after completing just a single trial. This

performance is at the effective ceiling. Before completing the first trial, participants have no

data on which to base their predictions; it is incredibly unlikely that a learner would select

the correct function from an unboundedly large space in the complete absence of a learning

signal. Other concepts—like replace each element with 1 if the element is equal to its index

and 0 otherwise, or list the indices of the elements of the tail of the list equal to the head of

the list—were so difficult that no participant ever responded correctly to a single trial. The

remaining concepts smoothly vary between ceiling and floor. There are no notable plateaus

or discrete levels of difficulty as might be expected if description length were the dominant

predictor of performance.

In addition to showing a wide variance at the concept level, the top of Figure 5-2 also

shows pronounced patterns of variation at the participant level. Once mean performance

is sufficiently far from floor or ceiling, the confidence interval on mean accuracy for each

concept tends to be wide. The bottom portion of the figure demonstrates why, plotting the

146

R2 = 0.074

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

Model Mean Accuracy

H
um

an
 M

ea
n

A
cc

ur
ac

y

(a)

R2 = 0.288

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

Model Mean Accuracy

H
um

an
 M

ea
n

A
cc

ur
ac

y

(b)

Figure 5-4: Logistic model predictions (x-axis) of mean human accuracy (y-axis) by concept
(circles) based on description length in a rich model LOT. (a): predictions based on descrip-
tion length alone; and (b): predictions based on length with a mixed effect of participant
including intercepts and trial slopes. Concepts examined in Chapter 5’s model comparison
are marked in blue. 𝑅2 is variance in human performance explained by model predictions.

percentage of participants who correctly responded to 𝑁 trials, 0 ≤ 𝑁 ≤ 11. The figure

shows that while extremely easy and extremely difficult concepts tend to cluster around just

a few values of 𝑁 , moderately difficult concepts show a fairly diffuse distribution of values.

While it is possible that these variations are naturally expected, Figure 5-3 suggests that

they reflect genuine differences in participant performance. This figure plots a histogram

over mean performance by participant, averaging across the 10 concepts each participant

completed. As for individual concepts, there is a wide variation in the performance of

individual participants, suggesting that some were generally more accurate or faster to learn

than others.

Based on past successes in explaining human learning as a function of description length,

however, we fit a logistic model predicting accuracy on each trial based solely on a scaled and

centered measure of description length for the program encoding each concept in the model

LOT. Each program can be represented as a tree whose leaves are the visible symbols of the

program. These include function names like first and last, as well as variable names like

x or y. The internal nodes of the tree represent either function application, which has two

children, and lambda abstractions, which have a single child. We used the total number of

147

R2 = 0.309

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

Model Mean Accuracy

H
um

an
 M

ea
n

A
cc

ur
ac

y

(a)

R2 = 0.39

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

Model Mean Accuracy

H
um

an
 M

ea
n

A
cc

ur
ac

y

(b)

Figure 5-5: Logistic model predictions (x-axis) of mean human accuracy (y-axis) by concept
(circles) based on English description length. (a): predictions based on participant provided
English descriptions with a mixed effect of participant; and (b): predictions based on gold
standard English descriptions with a mixed effect of participant. Concepts examined in
Chapter 5’s model comparison are marked in blue. 𝑅2 is variance in human performance
explained by model predictions.

nodes in each program’s tree as its description length.

Figure 5-4a shows the match between the model predictions and human performance,

averaged on a per-concept basis. This model explains very little variance (𝑅2 = 0.074).

The particular model LOT used to describe these data, then, is a poor predictor of human

learning performance on these concepts. This initial model did not account for variation in

the performance of individual learners. We therefore extended it to include a random effect

of participant sensitive to both overall accuracy and the speed with which each participant

learned trial-to-trial within an individual concept. Figure 5-4b shows that this provides a

significantly better fit than length alone (𝑅2 = 0.288, difference = 0.215, 95% CI = [0.180,

0.233], p < 0.001). Even so, the bulk of the variance remains unexplained. Even correcting

for differences in performance across individual participants, many concepts are much easier

or much harder than can be explained given their length in our model LOT.

This result is surprising given the success of past work in correlating description length

and learning difficulty. Moreover, our model LOT has not been empirically verified as an

accurate description of the human LOT relevant to this task. To confirm our results, we

148

therefore scored participant natural language responses on a three-point scale: incorrect,

partial, and correct. Incorrect indicated that the participant did not identify any portion

of the correct concept, correct indicated that they fully identified the correct concept, and

partial indicated that they correctly identified some aspects of the concept but did not

describe it in full. Participants provided correct responses for 231 of the 250 concepts. After

preprocessing correct responses to remove unnecessary punctuation and separate grouped

mathematical symbols (e.g. “n+1” was rewritten as “n + 1”), we computed the mean number

of words per response by concept. This mean correct English description length serves as

a secondary measure of description length. The claim is not that the LOT uses natural

language, but instead that important concepts in the LOT are likely to be named in a

lexically rich language like English. Concepts which are simple to describe in English are

then likely to correspond to concepts which have a compact description in the LOT, and

similarly for concepts which have long English descriptions.

Because this measure was only moderately correlated with model LOT description length

(𝜌 = 0.448), it is possible that English description lengths might provide a significantly dif-

ferent and perhaps more predictive measure of learning difficulty. We therefore constructed

a mixed effect logistic model predicting human performance using a fixed effect of mean cor-

rect English description length and a random effect of participant as described previously.

Figure 5-5a shows the results of this analysis. As with description length in the model LOT,

verbal description length does not appear to be a strong predictor of human performance

for these tasks (𝑅2 = 0.309). We repeated this analysis with a set of gold standard English

glosses (Figure 5-5b; see Appendix A for glosses), and while the results are significantly better

(𝑅2 = 0.390, difference= 0.081, 95% CI=[0.071, 0.089], p< 0.001), they were constructed by

individuals deeply familiar with the domain and with technical vocabulary used in computer

science for describing list processing programs. Furthermore, the length of these gold stan-

dard descriptions is strongly correlated with the length of participant-provided descriptions

(𝜌 = 0.670) and, like the participant-provided descriptions, only moderately correlated with

concept length in the model LOT (𝜌 = 0.486), so we use participant-provided descriptions

for the remainder of our analysis.

Table 5.4 reports several cases where the regression model based on length in the LOT

149

ID 𝜇ℎ 𝜇𝑙 Δ Concept

c134 0.034 0.484 -0.450 (𝜆 x (cut_slice (first x) (second x) x))
c113 0.018 0.451 -0.433 (𝜆 x (filter (𝜆 y (> (first x) (% y 10))) x))
c202 0.068 0.501 -0.433 (𝜆 x (find is_even x))
c183 0.000 0.414 -0.414 (𝜆 x (find (== (first x)) (drop 1 x)))
c164 0.030 0.430 -0.399 (𝜆 x (map (𝜆 y (+ (/ y 4) 5)) x))
c131 0.045 0.442 -0.396 (𝜆 x (filter (𝜆 y (is_even (/ y 10))) x))
c208 0.127 0.517 -0.390 (𝜆 x (takelast (last x) x))
c158 0.000 0.388 -0.388 (𝜆 x (mapi (𝜆 y (𝜆 z (if (== y z) 1 0))) x))
c128 0.129 0.510 -0.381 (𝜆 x (sort (𝜆 y y) (cut_idx 3 (drop 2 x))))
c129 0.056 0.428 -0.373 (𝜆 x (slice (first x) (second x) (drop 2 x)))
c151 0.853 0.541 0.312 (𝜆 x (flatten (map (𝜆 y (repeat y y)) x)))
c121 0.873 0.554 0.319 (𝜆 x [(last x)]) (using 0–99)
c048 0.818 0.486 0.332 (𝜆 x (take 1 x))
c223 0.766 0.429 0.337 (𝜆 x (map (𝜆 y (+ (* (% y 10) 10) (/ y 10))) x))
c102 0.903 0.554 0.349 (𝜆 x x)
c043 0.777 0.426 0.351 (𝜆 x [8, 2, 7, 0, 3])
c061 0.836 0.481 0.355 (𝜆 x [(last x)]) (using 0–9)
c147 0.811 0.425 0.385 (𝜆 x (flatten (mapi (𝜆 y (𝜆 z [z, y])) x)))
c044 0.723 0.330 0.394 (𝜆 x [1, 9, 4, 3, 2, 5, 8, 0, 4, 9])
c101 0.748 0.344 0.404 (𝜆 x [11, 19, 24, 33, 42, 5, 82, 0, 64, 9])

Table 5.4: 20 concepts whose length-based predictions strongly strongly deviate from human
performance. 𝜇ℎ and 𝜇𝑙 report mean human and length-based accuracy, respectively; ∆ =
𝜇ℎ − 𝜇𝑙. The table includes the 10 largest and the 10 smallest values of ∆. Literal lists were
rewritten for legibility.

strongly deviated from human performance, predicting that concepts would be either easier

or harder for people than they actually were. Six of the ten concepts listed as being more

difficult for people than predicted by the regression involved slicing or filtering the list in

some way. It is tempting to say that such functions are either not part of people’s LOT or

are much more costly than a simple measure of description length would suggest. Models

which learn a weighted grammar (e.g. Ellis et al., 2020) might be more appropriate. At the

same time, however, there are also examples of filtering and slicing which are much easier for

people than predicted by length alone, such as removing every third element (∆ = 0.248),

or extracting a sublist containing the second, third, and fourth elements (∆ = 0.186). The

same is also true for other concepts in the table which the regression underpredicted—

map, takelast, and sort are all used in concepts which are significantly more difficult and

significantly easier than predicted by description length in our model LOT.

The concepts in Table 5.4 which are significantly easier than predicted by description

length share a key feature in common. They often describe very simple, structured transfor-

mations that can be easily inferred directly from input/output pairs. The functions which

return constant lists, for example, have a long description length, but nearly the entire struc-

150

ture of the concept is directly encoded in the output. The only inference required is that the

output given in the first few trials should be given for any input. Similarly, return the input,

remove all but the first element, and remove all but the last element all rely on very simple

structural transformations. So, too, do repeat each element, 𝑛, 𝑛 times, and swap digit orders

in each element, and insert each element alongside its index in the input, though these are

slightly more complex because the transformation is applied elementwise. The individual

transformations of swapping digits or inserting an index, however, are each readily visible in

the input/output relation, as is the fact that the transformation is applied to each element.

In light of these observations, we analyzed the programs for every concept in our model

LOT, assigning each symbol in each program a visibility: visible, semi-visible, or hidden.

Visible symbols can reasonably be inferred directly from 1–3 examples. For example, in

(𝜆 x (slice 2 4 x)), which extracts a sublist containing the second through fourth ele-

ments, slice and x are considered visible because outputs contain a non-trivial, continuous

sublist of the input which excludes both endpoints. That the output always includes a por-

tion of the input immediately suggests that the function uses its argument x. slice is not

the only symbol whose use signals the extraction of a sublist. take, takelast, and filter

can also return sublists, though filter is unlikely to be continuous, and take and takelast

always include an endpoint. After looking at just a couple of examples, slice can be reason-

ably inferred. Similarly, semi-visible symbols can be reasonably inferred directly from 3–5

examples or indirectly from 1–3 examples. For example, the symbols 2 and 4 in the program

above can be inferred directly by reviewing several examples to notice that the first element

in an output is always element 2 of the input, and the last element of the output is always

element 4 of the input. They can be inferred indirectly by first inferring the use of slice

and then searching for suitable values for each argument. All other symbols are scored as

hidden, meaning not that they are necessarily difficult to learn, but that they likely have to

be guessed. For example in (𝜆 x (singleton (- (length x) (length (unique x))))),

which computes the number of repeated items in a list, the use of singleton and x are

semi-visible, because a few examples will show that the output is always a single element

and varies based on the input. The other elements, however, which compute the difference

between the length and the number of unique elements, cannot be obviously inferred directly

151

from the data. They are thus considered hidden. This notion of visibility is an initial attempt

to capture how much information is required to infer a symbol’s existence. Visible symbols

require relatively less information than semi-visible symbols, which require relatively less

information than hidden symbols.

Because each symbol in a program’s description length is assigned a score, visibility effec-

tively subdivides description length into three categories. If description length is the primary

driver of learning difficulty, then breaking it into multiple categories should have no impact

on the ability to predict human performance. If however, people are sensitive to the kinds

of inferences which visibility attempts to capture, then predictive models based on visibility

may be significantly more accurate. The child as hacker suggests the latter hypothesis. We

therefore constructed a third mixed effect logistic model including counts of visible, semi-

visible, and hidden symbols in each program as well as the random participant effect used

previously. All counts were centered and scaled. Figure 5-6a shows that assigning a visibility

to each node significantly improves the ability to predict human performance compared to

the description length models based on the model LOT (𝑅2 = 0.459, difference= 0.171, 95%

CI=[0.159, 0.179], p< 0.001) and the gold standard English descriptions (difference= 0.069,

95% CI=[0.059, 0.079], p< 0.001). This result suggests that the individual symbols which

compose a concept’s description do not impose uniform costs on learning. The impact in-

stead appears to be significantly modulated by how easily that symbol can be inferred from

input/output data.

Even so, the visibility measure used here is a crude measure of the inferential cost of an

individual symbol. It fails to take into account possible differences between various kinds of

inferences. For example, inferring that a list function’s behavior depends on the value of a

particular element in the list might be more difficult than recognizing that it relies on some

form of highly familiar behavior like counting. We thus further analyzed each concept for

several additional factors:

Internal Argument True if a concept relied on using an element or property of the list

as an argument to another function, as in (𝜆 x (take (first x) (drop 1 x))), which

takes 𝑛 items from the tail of the list, where 𝑛 is the head.

152

R2 = 0.459

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

Model Mean Accuracy

H
um

an
 M

ea
n

A
cc

ur
ac

y

(a)

R2 = 0.568

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

Model Mean Accuracy

H
um

an
 M

ea
n

A
cc

ur
ac

y

(b)

Figure 5-6: Logistic model predictions (x-axis) of mean human accuracy (y-axis) by concept
(circles) using semantic features. (a): predictions based on visibility and mixed effect of
participant; and (b): predictions incorporating a variety of syntactic and semantic features
and mixed effect of participant. Concepts examined in Chapter 5’s model comparison are
marked in blue. 𝑅2 is variance in human performance explained by model predictions.

Counting True if a concept relied on counting knowledge, such as computing the length of

the list or counting the number of times a given element appeared.

Conditional True if the concept required conditional reasoning, such as filtering by a pred-

icate or handling exceptional cases.

Recursive True if the concept required recursive reasoning, as with map, filter, or fold.

≥ 10 True if the concept used numbers greater than nine.

Variables A count of the number of variable references in the program.

The presence of many of these features, particularly Counting, Conditional, and Recur-

sive, often affect programs such that they can, like visible nodes, be directly inferred from a

few input/output examples. Others, particularly Internal Argument and Variables, require

multiple inference steps or guessing to discover. Having analyzed each concept, we con-

structed a final mixed effect logistic model including fixed effects for each of these features.

We also included counts of visible, semi-visible, and hidden symbols for each program and

a mixed effect for participants. All counts were centered and scaled. Figure 5-6b shows the

results of this analysis. The addition of these semantic features again improves the ability to

153

predict human performance compared to all previous models, including the visibility model

(𝑅2 = 0.568, difference= .109, 95% CI=[0.093, 0.124], p< 0.001). This result suggests that

the ease of inferring conceptual dynamics from structural cues in input/output data differs

significantly not only with the overall complexity of inference but also with the kinds of

dynamics being inferred.

If description length served as the primary driver of learning difficulty, we would expect

to see similar coefficients for Visible, Semi-Visible, and Hidden. We would also expect

semantic features like Internal Argument, Conditional, Counting, Variables, and Recursive,

to be close to 0. Finally, ≥10 would be expected to have a significant negative influence on

performance, as it would indicate a significantly larger set of possible constants, and thus

possible programs, to consider during learning. That is, the difficulty of learning would be

determined primarily by the length of the program and the number of possible programs.

The meaning of the nodes and their impact on the behavior of the program would have

relatively little influence on learning.

By contrast, the child as hacker suggests that people rely on a diversity of structure-

sensitive learning mechanisms. At the same time, it recognizes the impact of Occam’s razor:

people likely prefer simpler hypotheses. As a result, description length should play a role

in predicting learning difficulty, but the impact of a given symbol in a program would be

heavily influenced by its visibility. Moreover, semantic features are likely to have a significant

influence on learning difficulty. Features which are directly reflected in the structure of the

output lists, such as counting and certain kinds of recursive patterns, should make concepts

easier to learn, while hidden structures like conditionals or internal arguments should make

concepts harder to learn. By contrast, alphabet size might have a relatively insignificant

role, as learners would, whenever possible, use semantic inferences to dramatically reshape

and reduce the size of the hypothesis space.

To investigate these dynamics, Figure 5-7 plots the coefficients for each component of

the final regression. The results are consistent with the predictions of the child as hacker.

Hidden, Semi-Visible, and Visible all are significant factors with notably different impacts

on learning performance. The level of impact is also consistent with the predictions of the

child as hacker: many hidden nodes make a program much more difficult to infer, while

154

−1

0

Hidden Semi−Visible Visible Internal Argument Conditional Counting Recursive Variables ≥ 10

Feature

M
ea

n
C

oe
ffi

ci
en

t

Figure 5-7: Regression coefficients from the feature-based model with 95% CIs, sorted by
absolute value.

many visible nodes actually make the program less difficult to infer. This suggests not only

that visible symbols have essentially no learning cost, but they might even make it easier

to infer other symbols in the overall program. Additionally, features which are difficult

to infer directly from the structure of input/output pairs, such as Internal Argument and

Conditional, negatively impact human learning. Those which relate to structure that can

be directly inferred—Counting and Recursive—positively impact performance. The set of

numbers required to explain each concept, and the number of variables tokens in the concept,

meanwhile, have no significant impact.

The analysis so far has focused on predicting learning accuracy from summary statistics

of a concept’s structure. The results suggest that people are sensitive to various kinds of

structure in observed data and are able to use that structure to more or less easily infer

certain aspects of a concept’s compositional structure. The analysis has not, however, made

any attempt to explain human performance in terms of a causal model of learning, proposing

specific kinds of inference and how they might interact to explain these results. This is largely

the focus of Chapter 6, but Figure 5-8 compares three computational models of learning in

the LOT in terms of their ability to explain human performance on all 250 concepts: Enumer-

155

ation, Fleet, and HL2. Enumeration and Fleet represent two learning algorithms—exhaustive

enumeration and stochastic search, respectively—well-known to match description length to

learning difficulty. HL, by contrast, contains a variety of structure-sensitive learning mech-

anisms. Please see Section 6.3 for more details. Each model used the minimal model LOT

shown in Table 6.1, learned for 10min per trial per concept (110min total per concept), and

searched in an online fashion (i.e. performance in each new trial built on learning from pre-

vious trials). The minimal model LOT used here is almost certainly a poor match for the

relevant portions of a human learners’ conceptual repertoire. It is, however, technically use-

ful in that exhaustive enumeration and stochastic search are sensitive not only to description

length but also alphabet size. The larger the language, the more difficult search becomes for

these models. Choosing a language requires balancing description length and alphabet size.

Their performance here should then be interpreted as a lower bound on their overall ability

to explain these data.

Perhaps the most striking feature is that there are many list functions for which the

models never make a single correct prediction. This result is expected. List functions

are a challenging domain, and many of the concepts are not feasibly within reach of the

minimal DSL used to generate these results. It therefore makes sense to focus on those

places where the models did make accurate predictions. For these concepts, HL has the best

performance: it has non-zero performance for 125 concepts, Fleet for 99, and Enumeration

for 50. Combined, the three models have non-zero performance on 141 of the 250 concepts:

35 are unique to HL, 13 to Fleet, and 5 to Enumeration. Humans, by contrast, have non-zero

performance for 248 of the 250 concepts. HL also explains significantly more variance than

the other models (𝑅2: HL = 0.212, Fleet = 0.164, Enumeration = 0.161). Moreover, HL

is within 5% of having the most accurate prediction of the three models for 107 of the 141

concepts, while Fleet and Enumeration are within this bound for just 57 and 46 concepts,

2The implementation of HL used in the analyses that follow is a slightly earlier version than that reported
in Chapter 4, and the two objective functions used during prediction and search, while capturing similar
intuitions as in the reported model, took slightly different forms. Specifically, the prediction objective
replaced 𝑃META with an equally-weighted mixture between 𝑃META and 𝑃TRS, i.e. (𝑃META +𝑃TRS)/2. The
prediction objective used a similar mixture in place of the noisy-or used in the reported model. For the
100 concepts analyzed in the model comparison of Chapter 6, however, performance on the two models was
highly correlated (𝜌 = 0.987), so the performance reported here on all 250 concepts using the older model is
likely very similar to what would be seen with the reported model.

156

R2 = 0.086 (0.161)

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
Model Mean Accuracy

H
um

an
 M

ea
n

A
cc

ur
ac

y

(a)

R2 = 0.107 (0.164)

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
Model Mean Accuracy

H
um

an
 M

ea
n

A
cc

ur
ac

y

(b)

R2 = 0.155 (0.212)

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
Model Mean Accuracy

H
um

an
 M

ea
n

A
cc

ur
ac

y

(c)

Figure 5-8: Program-induction-based model predictions (x-axis) of mean human accuracy
(y-axis) by concept (circles). (a): Enumeration; (b): Fleet; and (c): HL. Concepts examined
in more detail in Chapter 5’s model comparison are marked in blue. 𝑅2 values show the
coefficient of determination for all concepts and, in parentheses, for concepts on which the
models had non-zero performance.

respectively. While these results are by no means conclusive, they do show that a learning

algorithm designed around a diversity of structure-sensitive learning mechanisms is better

able to account of human performance on a broad range of inductive learning tasks.

5.4 Discussion

This chapter presented a large scale behavioral experiment in human concept learning testing

online inductive learning for 250 list functions. This experiment was the first large scale

test of list functions in human learners and showed high variance in performance across

participants and across concepts. We modeled this variance in terms of a logistic model

incorporating a wide variety of syntactic and semantic features including visibility, a measure

we introduced to capture the local learnability of symbols in an LOT expression. We showed

that this approach is significantly more predictive than models based on description length

alone, whether length is measured in a rich, domain-appropriate model LOT or in English

text-based descriptions. We further showed that the impact of the individual symbols that

make up description length is heavily modulated by their visibility and that a number of other

semantic features strongly impact learning performance. A significant change in the size of

the hypothesis space, however, had no measurable effect. Finally, we found that a model

which uses structure-sensitive learning mechanisms is better able to account for these findings

157

than models which strongly connect description length and learning difficulty. Overall, these

results suggest that the traditional concerns of description length and hypothesis space size

perhaps matter less than suggested by the standard approach, while structural and semantic

cues perhaps matter significantly more.

Piantadosi et al. (2016) showed that the specific LOT used to measure description length

significantly impacts a LOT-based model’s ability to predict human learning. We partially

mitigate that concern by also including a natural-language based measure of description

length. Given the long line of mathematical, computational, and empirical results in fa-

vor of a simplicity bias, it is still possible that the results reported here are the result

of using a poorly fit LOT. While a search over possible LOTs might reveal several with

better fits than that used here, we think the general conclusion of this work still stands.

Our model LOT contained primitives supporting a broad spectrum of algorithmic abilities,

including those analyzed: higher-order functions supporting iteration and recursion, condi-

tional reasoning, several functions for dealing with count knowledge, and so on. Moreover, it

seems unlikely that any reasonable LOT would include f x = [8, 2, 7, 0, 3], much less

f x = [11, 19, 24, 33, 42, 5, 82, 0, 64, 9], yet these are both in the top 10–15% of

concepts in terms of mean accuracy, not much more difficult than the identity function or

extracting individual elements.

At the same time, simplicity, particularly as embodied in the principle of Occam’s Razor,

seems to be an essential feature of theory building and of learning more generally. As has

been shown many times, learners prefer hypotheses which are themselves simple, at least

in part because simpler hypotheses are forced to make stronger predictions and are thus

more likely to generalize rather than memorize. Our verbal response data suggest that

when participants learned a concept, they were able to give a simple verbal description of

the concept. They did not “needlessly multiply entities”. Rather than interpreting these

results as saying that simplicity is somehow unimportant for learning, we instead see them

as reinforcing simplicity as an absolutely essential element of learning.

Our results show that learning performance is more strongly predicted by specific kinds

of structure in observed data than by simple measures of description length. That is, learn-

ers appear to value simple hypotheses—even if the simplest accurate hypothesis happens

158

to be quite complex—but their learning mechanisms appear to be sensitive to more than

description length alone. These results suggest that people are able to recognize specific

patterns in data and enable exceptionally strong data-dependent inductive biases that dra-

matically narrow the hypothesis space. By recognizing the right patterns, the search process

itself thus becomes much simpler, reaching some kinds of complex hypotheses much more

quickly than length-based search methods like enumeration or random sampling. We there-

fore see these results as suggesting that learners not only have a strong preference for simple

hypotheses, but also a strong preference for simple searches. Uniform search over a large

hypothesis space may be appropriate in some cases, but strong structure-sensitive inductive

biases appear preferable when available.

The set of numbers required to explain each concept has no significant impact on learning

in this experiment. This result is surprising from the perspective of past work relating

simplicity to learning difficulty, because the minimum description length of a concept would

be strongly influenced by the number of possible primitives and sub-concepts. In any formal

model, the number of primitives combinatorially impacts the number of possible programs.

Adding 90 additional primitives of the same type would typically strongly and negatively

affect the performance of grammar-based learning algorithms like enumeration or random

sampling. In this case, each time a program could possibly include a number, the set of

numbers to consider would be ten times larger. A learner would therefore need significantly

more information to decide which number to use. This point stands even if numbers are

constructed compositionally rather than treated as primitives. A learner would require

significantly more information to determine which of 100 possible option to use than they

would when deciding between just 10 options. In the presence of learning mechanisms which

frequently reshape the hypothesis space, however, learners may spend very little time working

with the full space of all possible programs. They may, at any given time, consider only a

few symbols, making the effective language size much smaller.

In sum, these data provide three results which suggest structural sources of learning that

go significantly beyond those of hypothesis space size and description length favored by the

standard approach. First, visibility strongly modulates and may even negate a symbol’s

impact on learning difficulty. Second, specific semantic features like the use of recursion,

159

counting knowledge, or conditional reasoning are highly predictive of learning performance.

Third, a significant change to the size of the program space—i.e. order of magnitude differ-

ences in the set size of numbers needed to explain a concept’s behavior—has no effect on

learning. This suggests the need for a richer understanding of simplicity that goes beyond

description length in a proposed LOT to incorporate the rich interaction of data, changing

objectives, current hypotheses, and diverse learning mechanisms. Simplicity is not measured

purely in terms of the final concept but also in terms of the entire generative process giving

rise to that concept.

Even so, the significance of these results is strongly limited. First, the analysis here

focuses on predicting accuracies based on features of gold standard encodings of target

concepts rather than the hypotheses produced by a concrete learning algorithm. It thus

fails to account for the existence of concepts which are similar to the targets and provide

high accuracy while being significantly shorter or otherwise easier to learn. It also fails to

account for cases where learners were nearly correct and perhaps miskeyed a small number

of digits during the experiment. Many of these features were computed manually, so the

analysis focused on a much smaller number of features than participants might have used.

Second, our account of visibility focused on the approximate difficulty of inferring the

existence of each symbol in a concept definition. Because the inferences frequently rely on

the interaction of inductive and deductive reasoning, our initial assessment was subjective

and defined just three levels of visibility: visible, semi-visible, and hidden. This work would

benefit from a more graded and rigorously computational account of visibility. Such an

account could focus on defining visibility in terms of an execution trace, the step-by-step

record of a program’s behavior. A first step in this direction would be to measure visibility in

terms of how many times a symbol was rewritten during the program’s execution. Symbols

which were never rewritten would be highly visible, while those rewritten several times would

be less visible. An even better assessment, however, would be to provide a model of learning

whose dynamics match the inferential dynamics of human learners. Such a model could then

be analyzed to predict the visibility of given symbols in an LOT expression as well as the

overall complexity of learning.

Perhaps the key limitation of this work, then, is that it did not center on comparing

160

human learners with implemented theories of learning whose performance is objective and

whose dynamics can be analyzed in detail. It briefly applied three models of learning to

explore ways in which structure-sensitive learning mechanisms might differ from description-

length-based accounts of learning. It did not, however, deeply investigate the dynamics

of learning in an implemented computational model. Nonetheless, the results suggest that

such a model would likely benefit from an algorithm which can dissociate the complexity

of learning from the complexity of the learned hypothesis and which is able to combine

inductive and deductive inferences to quickly infer certain kinds of conceptual structure. The

HL model discussed in Chapter 4 is designed in precisely this way. Our results show that it

decidedly does not yet match the scope and flexibility of human learners3, but its diversity

of learning mechanisms appear to allow it to quickly acquire certain kinds of concepts. Some

of these mechanisms are sensitive to patterns demonstrated to be important here, such

as recursive and conditional reasoning. Moreover, its ability to memorize data, analyze its

detailed structure, and chain together moves that combine inductive and deductive reasoning

captures the basic intent of our visibility analysis. It goes beyond that analysis, however, by

providing a generative account of how each symbol is inferred.

Chapter 6 more deeply investigates these issues by comparing HL against several alter-

native models of program-induction-based learning in the LOT in terms of their ability to

predict human learning performance. Given the scope of HL’s initial learning mechanisms

and the dramatic impact which language size has on algorithms which rely on exhaustive or

stochastic search, the comparison focuses on 100 of the 250 concepts reported here. These

concepts were specifically designed to be learnable from a minimal DSL while exhibiting a

variety of learning difficulties and algorithmic patterns. The comparison looks at both how

accurately these models are able to predict human performance as well as how sensitive their

algorithms are to the semantic features analyzed here.

3For example, it cannot yet capitalize on the subtle differences in behavior between filter, take, and
slice used above to introduce the concept of visibility.

161

162

Chapter 6

Human-like learning of list functions

6.1 Introduction

Developing a computationally precise account of human learning is one of the central goals of

cognitive science. It has fascinated those interested in the mind since before cognitive science

could be rightly identified as its own discipline. Boolean logic (Boole, 1854), the Turing

machine (Turing, 1936), and artificial neural networks (McCulloch & Pitts, 1943) were all

inspired, if not explicitly motivated, by the desire to provide a computational explanation

of learning and cognition. The earliest works of modern cognitive science share a similar

goal, using computational language to explain mental behavior (Newell et al., 1958; Newell

& Simon, 1956; Newell et al., 1959; Chomsky, 1959; Miller, 1956). These early efforts have

since evolved into several disciplines focused on providing computational models of intelligent

behavior including: cognitive science itself, artificial intelligence (Russell & Norvig, 2002),

machine learning (Murphy, 2012), and even the newly emerging science of machine behavior

(Rahwan et al., 2019).

Even so, the models produced after decades of research by tens of thousands of scientists

fall far short of the accomplishments of children born three or four years ago. These children

can: identify objects and their affordances; communicate verbally through talking, singing,

whispering, shouting, and joking; introspect on their own desires, preferences, and beliefs;

follow instructions; coordinate in social situations to help, play, or determine ownership;

perform routine tasks like making beds and dressing themselves; navigate any environment

163

they find themselves in by walking, running, crawling, climbing, jumping, rolling, and any

number of other means they happen to invent; count and perform basic arithmetic; provide

causal explanations for what they observe in the world and in the behavior of other people;

invent stories about princesses and dinosaurs and the dog down the street; compose complex

physical artifacts using wooden blocks, sand at the beach, or whatever is at hand; and the

list goes on. Models of any one of these things fall short of human abilities, yet children do

all these things flexibly and in combination with one another.

Despite the flexibility and expansiveness of human cognition, or perhaps because of it,

those interested in the organization of the mind have long noted its seeming ability to

compose smaller units of meaning into larger ones in rule-like ways. These observations led

Boole, for example, to hypothesize that thought occurred in a mental language based on

Boolean logic. The idea of a mental language, or language of thought (LOT; Fodor, 1975),

has been used to explain the systematic, productive, and compositional nature of thought.

The core claim is that the mind is organized by means of a mental language such that

individual concepts are expressions in that language, and learning consists of discovering

expressions which make sense of observed data. Modern formulations have converged on the

idea that this LOT behaves like a probabilistic programming language, which additionally

helps to explain gradedness, variation, and computational expressiveness in human thought

(Goodman et al., 2015) while making strides to resolve long-standing debates in the field

(Piantadosi & Jacobs, 2016).

If knowledge is expressed as programs, learning is expressed as programming. More

specifically, learning becomes program induction (Flener & Schmid, 2008)—the construction

of programs to explain observed data. Many early learning as programming models grew

out of a tradition focused on providing a computational-level1 explanation of learning as

1David Marr (1982) discusses three levels at which cognitive phenomena can be explained. The compu-
tational level focuses on function. It considers the problem to be solved, the space of hypotheses, and the
objective to be satisfied. The algorithmic level focuses on specific algorithms and representations by which
the problems, hypotheses, and objectives of the computational level can be realized. The implementational
level focuses on how these algorithms and representations are implemented in a physical system like the
brain, a silicon computer, or your sock drawer. Work since Marr has generalized the three levels suggesting
for instance, a level between the computational and algorithmic (e.g. Lieder & Griffiths, 2020; Griffiths et al.,
2015). To avoid confusion in the discussion of models which use computation to explain cognitive phenomena
and models which operate at Marr’s computational level, I use computational to describe the former and
computational-level to describe the latter.

164

Bayesian inference (see Ullman & Tenenbaum, 2020, for a review). The core of the idea

is that people maintain a distribution over possible solutions for any given problem. This

distribution initially reflects prior knowledge but is updated using Bayes’ Law to incorporate

new observations in a principled way. Early models focused on fairly small hypothesis spaces

in which each hypothesis was relatively unstructured and could be explicitly considered and

updated as each new datum was observed (Tenenbaum, 1999, 2000; Kemp & Tenenbaum,

2009; Kemp et al., 2007; Goodman et al., 2011).

The formalisms used by many learning as programming models, however, defined un-

boundedly large hypothesis spaces, making it infeasible to exhaustively consider all possible

hypotheses. Models were instead forced to search, considering only a small part of the

hypothesis space. Still motivated by providing a computational account of learning, these

models focused on search algorithms with clear computational-level interpretations and guar-

antees, models that moved through the posterior distribution over hypotheses in predictable

ways. Markov chain Monte Carlo (MCMC) and other probabilistic inference algorithms thus

became common search algorithms in computational models of learning (Kemp & Tenen-

baum, 2008; Goodman, Tenenbaum, Feldman, et al., 2008; Piantadosi et al., 2012, 2016;

Ullman et al., 2012; Griffiths et al., 2015). Artificial intelligence models of learning as

programming, and algorithms developed in the field of program synthesis more generally

(Gulwani et al., 2017), have tended to take a similar approach. These algorithms tend to

focus on the highly-engineered application of a single technique, including MCMC (Schkufza

et al., 2013; Alur et al., 2013), as well as enumeration (Feser et al., 2015; Akiba et al., 2013;

Gulwani et al., 2011; Katayama, 2013), SAT/SMT-solving (Solar-Lezama, 2008; Alur et al.,

2013), type-directed synthesis (Osera & Zdancewic, 2015; Polikarpova et al., 2016) meta-

interpretative learning (Muggleton et al., 2015; Cropper et al., 2019), genetic programming

(Koza, 1989; Koza & Koza, 1992; Poli et al., 2008; Langdon & Poli, 2013), and neural pro-

gram synthesis (Bošnjak et al., 2017; Feser et al., 2017; Gaunt et al., 2016; Parisotto et al.,

2016; Devlin et al., 2017).

Humans, however, are not computational-level abstractions. Our history as a species and

as individuals has given us specific mental representations, values, and learning mechanisms

that deeply impact the kind of learning that is easy (Fodor, 1983; Carey, 2009) or even

165

possible (Chomsky, Keyser, et al., 1988; McGinn, 1993). Rather than operating primarily

by means of a single learning mechanism to advance a single objective function, people make

use of a wide variety of learning mechanisms, selecting between them as appropriate for the

task at hand (Siegler, 1996; Siegler & Shipley, 1995). They are constrained by the need to

solve many kinds of problems with sharp limits on their time and energy (Lieder & Griffiths,

2020; Lehman & Stanley, 2011a). They flexibly devise interventions on the world to tease

apart confounding evidence, interpret evidence according to context, and form sophisticated

causal theories (Schulz, 2012b; Gopnik, 2012). They make use of various forms of analogy,

thought experiments, and mental simulation to reason constructively (Lombrozo, 2019; Xu,

2019). They posit changes to intuitive and formal theories by means of placeholder concepts

that bring about radical conceptual change and bootstrap the development of entirely new

domains of thought (Barner & Baron, 2016; Carey, 1985, 2009; Gopnik, 1983).

While the idea of learning as programming has produced successful computational-level

models in a number of domains, these efforts frequently require extensive hand-engineering

(e.g. Lake et al., 2015; Piantadosi et al., 2016). A new approach that introduces strong but

general algorithmic-level constraints is likely needed to drive the next generation of compu-

tational models of learning. The child as hacker hypothesis refocuses the idea of learning as

programming around hacking, a particular type of programming practiced by people. Hack-

ing pursues internally motivated goals through an open-ended set of values and techniques.

It claims that a diverse toolkit of learning mechanisms is a central feature of learning es-

sential to explaining the richness of human development. It simultaneously frames known

learning mechanisms as techniques for revising code-like mental representations while identi-

fying the practices of actual hackers as a rich source of concrete hypotheses for mechanisms

that humans might use during learning.

This chapter compares HL, a computational model of learning as hacking (Chapter 4),

against several paradigmatic algorithms common in computational-level models of learning

as programming2. The models represent a broad spectrum of single-technique approaches to

learning including: exhaustive search, stochastic search, deductive proof, and neural program

2I am exceptionally grateful to Andrew Cropper, Kevin Ellis, Max Nye, and Steve Piantadosi for their
effort and expertise in contributing data for the comparison models.

166

synthesis. We compare the models in terms of their ability to predict human performance

on a large set of concept learning tasks focused on list functions. The human behavioral

data analyzed in this chapter come from the experiment described in Chapter 5. See the

description and analysis there for more details on the experimental method and the patterns

of results seen in humans.

We focus our comparison on 100 of the 250 concepts tested with humans. These concepts

are amenable to description in a relatively minimal domain-specific language (DSL) that

serves as our model LOT. At the same time, the concepts vary widely in terms of how easily

humans acquire them and in the algorithmic abilities required to express them, which include

conditional, recursive, and pattern-based reasoning. Moreover, we test concepts using two

different language sizes by varying the numerical constants available during learning: some

concepts rely on just the numbers 0–9, while others also require the numbers 10–99.

We restrict our analysis to concepts learnable from a minimal DSL for three reasons.

First, several of the models are extremely sensitive to the size of the language in which they

search. Providing a rich DSL would make it extremely time consuming to learn any program

more than a few symbols long. In order to compare a large set of concepts in a timely manner

while performing meaningfully complex searches, the DSL needed to be relatively small.

Second, one of our conclusions in Chapter 5 is that humans appear to make use of

learning mechanisms which exploit particular features of observed data to make structured

transformations either to individual hypotheses or to the entire hypothesis space. This point

focuses primarily on the algorithmic-level dynamics of learning. By restricting the DSL,

we are able to more clearly assess each model’s ability to capture these dynamics. We

show that HL is able to learn more of these 100 programs than the other models in our

comparison, and that it does so while predicting human performance at least as well as any

other model. We also show that HL far exceeds the other models considered here in terms

of the differences between its mean accuracy and that of human learners. These results

strengthen the conclusions of the empirical analysis in Chapter 5 by showing how a model

making use of mechanisms that dissociate length from learning difficulty compares favorably

with models in which that association is a defining feature. Our results also provide empirical

support for the usefulness of the child as hacker hypothesis in generating testable hypotheses

167

about human learning.

Third, HL adopts a view of learning which evolves the basic structure of a model LOT

over time. Rather than defining new concepts in terms of innate primitives, it adapts the set

of primitives and their meaning to fit the data. This is perhaps more similar to psychological

accounts of conceptual change (Barner & Baron, 2016; Gopnik, 1983; Carey, 1985, 2009)

than to the traditional Fodorian view in which all concepts are merely compositions of an

unchanging set of primitives (Fodor, 1975; Fodor, 1980). By restricting the model LOT such

that it provides little more than the basic symbols required to express the data themselves,

we model learning in an environment that is thus much more similar to that in which

children find themselves. The models know the structure of the data as given, but they

cannot draw on richly developed theories describing how to manipulate these data. The

dynamics of each concept must basically be learned from scratch. The overall complexity

of learning is then somewhat comparable to the kinds of learning underlying key conceptual

achievements throughout childhood, such as the cardinal principle (Piantadosi et al., 2012)

or basic algorithms for addition (Shrager & Siegler, 1998).

6.2 Concepts

The 100 concepts, concepts c001 to c100 in Appendix A, can be organized into five groups

of 20 concepts each.

The first group contained four subgroups of five concepts each. Each subgroup focused on

a simple manipulation task: indexing into a list, extracting a prefix, extracting a sublist, or

replacing the value of an element. The five problems in each subgroup were all variants of the

basic problem associated with the subgroup. These problem varied systematically to test for

differences in: recursive and non-recursive reasoning, the ability to handle exceptions, and

biases toward elements occurring early in a list. The first problem was a non-recursive variant

occurring early in the list (e.g. return a singleton list containing the third element). The

second problem extended the first by introducing a case for dealing with exceptional examples

(e.g. return a singleton list containing the third element if there is one, else return the empty

list). The third and fourth repeated the first and second, respectively, but using indices

168

occurring much later in the list (e.g. return a singleton list containing the seventh element

and return a singleton list containing the seventh element if there is one, else return the

empty list). The fifth problem in each subgroup required some form of recursive reasoning,

replacing any arbitrary constants with values computed directly from the list (e.g. return the

𝑛th element of the tail of the list, where n is the first element).

The second group was designed to test various kinds of conditional reasoning and con-

tained five subgroups of four concepts each. The first two concepts were trivially different

variants of a concept which did not require recursive reasoning (e.g. insert 5 as the second

element and insert 8 as the second element). The third concept introduced a condition based

on structural properties of the list such as equality between elements or the length of the list

(e.g. insert a new second element—8 if the list length is greater than 5, else 5). The fourth

concept introduced a condition based on specific numerical values in the list (e.g. insert a

second element—8 if the first element is greater than five, else 5).

The third group contained 20 assorted tasks that could be solved without recursive rea-

soning, and the fourth group contained 20 problems requiring recursive reasoning. The fifth

group contained 20 problems representatively sampled from the first four groups, modified

such that any constants in their definitions, as well as the associated input/output pairs,

were drawn from the range 0 to 99 rather than 0 to 9.

6.3 Models

The primary purpose of this work is to compare computational models of learning as pro-

gramming against human learners. We are particularly interested in explaining how humans

are able to draw semantic inferences from observed data that help them learn a concept more

quickly than might be expected given its complexity in the LOT. The specific hypothesis

under investigation is whether a computational model of learning explicitly incorporating

hacker-like elements provides a better explanation of human learning than models inspired

by learning as programming more broadly. To test this hypothesis, we compared the per-

formance of five models of concept learning. The HL model described in Chapter 4 serves

as the hacker-like model. Each of the four other models represents a broad class of learning

169

Usage Type Description

(𝜆 x body) t1� t2� (t1� t2) lambda abstraction; binds x for use in body
0, 1, 2,. . .,99 Int natural numbers
nan Int an out-of-bounds number (i.e. < 0 or > 99)
true, false Bool Boolean values
[] [t1] empty list
(cons x xs) t1� [t1]� [t1] prepend x to xs
(+ x y) Int� Int� Int add x and y
(- x y) Int� Int� Int subtract y from x
(> x y) Int� Int� Bool true if x is less than y
(if p a b) Bool� t1� t1� t1 a if p is true, else b
(== x y) t1� t1� Bool true if x and y are structurally identical
(is_empty xs) [t1]� Bool true if xs is empty
(head xs) [t1]� t1 first element of xs
(tail xs) [t1]� [t1] drop the first element of xs
(fix x f) t1� ((t1� t2)� t1� t2)� t2 recursively apply f to x

Table 6.1: The primitives initially provided to each model.

algorithm common in the learning as programming literature: exhaustive search (Enumera-

tion), stochastic sampling (Fleet), deductive proof (Metagol), and neural program synthesis

(RobustFill). We equipped each model with a minimal yet theoretically expressive DSL—a

typed lambda calculus like the model LOT in Chapter 5. The primary difference between

the two DSLs is that we deliberately restricted the set of primitives to just those listed in

Table 6.1.

For each concept, every model completed 5 runs of all 11 trials, searching for 10min

per trial in an online setting. Several of the algorithms rely heavily on stochastic behavior;

running each algorithm multiple times per concept provides a better measure of variance in

the algorithm due to randomization. Each trial ran for a total of 10min. That is, each model

was allotted 10min search on trial one, another 10min on trial two, and so on, for a total of

110min of search per run of each concept. For each trial 1 ≤ 𝑖 ≤ 11, the correct input/output

pairs for the previous 𝑖−1 trials were made available as training data, as well as the input for

trial 𝑖. The correct output of trial 𝑖 was held out as test data. As a result, the training data

set was empty during the first trial, as it was for human participants. Each model except

Metagol was setup so that search during trial 𝑖 + 1 started where trial 𝑖 finished, reusing

some portion of the computation from trials 1. . .𝑖 to hotstart trial 𝑖 + 1. Metagol’s design

makes online learning difficult, so it treated each trial independently. At the end of trial 𝑖’s

search period, each model selected a best hypothesis and used it to predict an output for

the current input. We describe each model in more detail below.

170

6.3.1 Enumeration

Exhaustive enumeration is an extremely general program induction algorithm. Given some

ordered generative process, it generates each program in order and evaluates it. If a solution

exists and the generative process includes that solution in its hypothesis space, enumer-

ation provides a simple brute-force method guaranteed to eventually discover the correct

hypothesis (Solomonoff, 1964a).

We used the high-performance enumeration algorithm described in Ellis et al. (2020).

This model performs type-directed top-down grammar-based enumeration in approximately

decreasing order of prior probability. That is, it treats the type system as a grammar over

programs and, starting from a requested type, iteratively lists all programs matching the

given type, starting with the shortest. The enumeration proceeds in depth-first fashion,

with an outer loop of iterative deepening: it first enumerates programs whose description

length lies is 0–∆, then all programs whose description length is ∆–2∆, then 2∆–3∆, and

so on until the end of the trial. ∆ was set to 1.5 nats; each task used a single CPU with no

offline training or parameter learning.

To accommodate online learning, Enumeration used a simple win-stay, lose-shift strategy

(Nowak & Sigmund, 1993). When asked to make a prediction, it used the first program

discovered which correctly explained all previously observed input/output pairs. If its pre-

dicted output was also correct, it continued to use that program to make predictions on

subsequent trials. If the predicted output was incorrect, it would select the first program

to correctly explain all previously observed input/output pairs plus the newly observed pair

revealed after making the prediction.

6.3.2 Fleet

Enumeration is a strictly deterministic algorithm; it lists all programs in order of length

until it finds a suitable hypothesis. Many other algorithms, however, are fundamentally

stochastic. These algorithms are broadly termed stochastic search. Genetic programming

(Koza & Koza, 1992; Langdon & Poli, 2013), for example, takes inspiration from random

processes at work in biological reproduction and natural selection. It randomly mutates and

171

crosses programs to produce a population of offspring. A subset of these are selected based

on fitness, though this process is also frequently stochastic. Another common approach to

stochastic search is to treat learning as sampling from a distribution over programs (Alur

et al., 2013; Schkufza et al., 2013). A common approach in cognitive models using stochastic

search in a model LOT is to frame synthesis as sampling from a Bayesian posterior combining

a grammar-based prior with an accuracy-based likelihood (Ullman et al., 2012). Based on the

specific structure of the distribution, a variety of algorithms can be used to sample from this

posterior, including Markov chain Monte Carlo (MCMC; Goodman, Tenenbaum, Feldman,

et al., 2008; Piantadosi et al., 2012, 2016) and Sequential Monte Carlo (SMC; Ellis et al.,

2019).

This comparison represents stochastic search using Fleet (Piantadosi, 2020). As used

here, Fleet runs a high-performance version of the rational rules (Goodman, Tenenbaum,

Feldman, et al., 2008) version of Metropolis-Hastings over programs in the DSL, similar

to the approach taken in Piantadosi et al. (2012, 2016). This MCMC technique proposes

changes to entire subtrees of expressions by selecting a node from the tree uniformly at

random and regenerating it from the grammar. It also used a parallel tempering scheme

(Vousden et al., 2015). Intuitively, parallel tempering simultaneously conducts multiple

searches in parallel MCMC chains, each at a different temperature. A chain with a higher

temperature is more likely to consider low-probability hypotheses and thus to move more

effectively around the entire space of programs with a fairly low degree of precision. Chains

with lower temperatures, by contrast, provide more precise search but are more likely to be

caught in local minima. Parallel tempering combines the best of both kinds of search by

periodically and stochastically swapping hypotheses between chains. This allows the overall

scheme to search broadly for promising areas of investigation and progressively narrow in on

the most valuable hypotheses.

The particular scheme used in this comparison simultaneously explored five chains at

different temperatures, adaptively spaced to have efficient proposal acceptance rates. The

maximum temperature was set to the trial number plus one, and the minimum temperature

was fixed to 1.0, meaning the lowest temperature chain theoretically sampled from the target

posterior. Swaps between chains were proposed every second and temperatures were adapted

172

every 30s. The Fleet grammar did not include lambda abstraction due to limitations of

the current implementation. Fleet is explicitly Bayesian. In these simulations, it used a

grammar-based prior and a likelihood based on string edit distance (treating lists as strings

of characters) which deleted each character from the end of a list with probability 0.0001,

and then appended uniformly random characters with the same probability. This likelihood

allows the model to assign nonzero probability to all data, but favors data for which the

model generates prefixes. To support online learning, each new trial was started on the

hypothesis with the best posterior hypothesis found previously.

6.3.3 Metagol

Another major category of inductive learning algorithms are based on various kinds of de-

ductive proof. The basic idea is to encode all the semantic and syntactic constraints of both

the task and the programming language into a logical formula. A solution to this formula—

i.e. an instantiation of any free variables—is then guaranteed to describe a syntactically

correct program which solves the task. Boolean SATisfiability (SAT) and Satisfiability Mod-

ulo Theories (SMT) techniques encode the entire problem as a propositional Boolean formula

(Jha et al., 2010; Polozov & Gulwani, 2015; Torlak & Bodik, 2013). This approach has also

been used successfully in systems which fill in high-level program sketches (Solar-Lezama,

2008) or which additionally encode distributional information to allow constraint-solvers to

act as probabilistic samplers (Ellis et al., 2016). Inductive Logic Programming (ILP) systems

take a different approach (Muggleton & De Raedt, 1994), encoding constraints as first-order

Horn clauses (i.e. 𝑋 → 𝑌 , where 𝑌 is a single literal, and 𝑋 is a conjunction of literals).

The goal is to discover a first-order theory, also encoded using Horn clauses, which implies

the data.

Metagol (Muggleton et al., 2015; Cropper et al., 2019; Cropper & Muggleton, 2016) is

an ILP system based on a Prolog meta-interpreter which induces Prolog programs, which

are expressed as a series of Horn clauses, written as Head :- Body.. Head is true if each

literal in Body is true. Empty bodies are also true. The key idea of Metagol is to use

metarules, or program templates, to restrict the form programs can take, and thus the

hypothesis space. A metarule is a higher-order clause. For instance, the chain metarule

173

Name Logical Form Description

Identity 𝑃 (𝐴, 𝐵)← 𝑄(𝐴, 𝐵) 𝑃 is 𝑄
Split 𝑃 (𝐴, 𝐵)← 𝑄(𝐴) ∧ 𝑅(𝐵) Make independent assertions, 𝑄 and 𝑅, about 𝑃 ’s arguments
Pre-Condition 𝑃 (𝐴, 𝐵)← 𝑅(𝐴) ∧ 𝑄(𝐴, 𝐵) 𝑃 is 𝑄 with a pre-condition 𝑅
Post-Condition 𝑃 (𝐴, 𝐵)← 𝑄(𝐴, 𝐵) ∧ 𝑅(𝐵) 𝑃 is 𝑄 with a post-condition 𝑅
Chain 𝑃 (𝐴, 𝐵)← 𝑄(𝐴, 𝐶) ∧ 𝑅(𝐶, 𝐵) Compose 𝑄 and 𝑅 to explain 𝑃
Memorize 𝑃 (𝐴)← ⊤ Assert that 𝑃 always holds for 𝐴
Infer-A 𝑃 (𝐵, 𝐶)← 𝑄(𝐴, 𝐵, 𝐶) 𝑃 is 𝑄, assuming some latent argument 𝐴
Infer-B 𝑃 (𝐴, 𝐶)← 𝑄(𝐴, 𝐵, 𝐶) 𝑃 is 𝑄, assuming some latent argument 𝐵

Table 6.2: The metarules used by the Metagol model.

is P(A,B) :- Q(A,C), R(C,B)., where P, Q, and R denote higher-order variables and A, B,

and C denote first-order variables. The goal of Metagol is to find substitutions for the

higher-order variables. For instance, the chain metarule allows Metagol to induce programs

such as f(A,B) :- tail(A,C), head(C,B), which can be loosely translated to the DSL

as (𝜆 x (head (tail x))). Metagol can induce longer clauses though predicate invention,

similar to the introduction of lambda abstractions. Metagol works by partially constructing

and evaluating programs, pruning the search space when a partial program fails to cover the

positive examples. Metagol is also capable of using negative examples to constrain search,

backtracking when a program covers a negative example. Our simulations, however, only

drew on positive examples.

Because Metagol learns relations, the evaluation is slightly unusual. For instance, suppose

it learned this two clause program:

f(A,B):-head(A,B).

f(A,B):-tail(A,C),head(C,B).

This f relation is nondeterministic and holds both over lists and their head elements and

lists and their second elements. To evaluate Metagol on each induced relation, we called the

Prolog program with the first argument and asked for answer substitutions for the second

argument, taking the first provided substitution as the output. Metarules are key to Metagol,

but deciding which metarules to use for a given task is an unsolved problem (Cropper &

Muggleton, 2015). To compute the benchmark, we gave Metagol a small set of 8 metarules

shown in Table 6.2.

174

6.3.4 RobustFill

Deep learning has become an increasingly important machine learning technique (LeCun et

al., 2015). Its basic approach is to encode a problem as a series of numbers which are given

as input to a multi-layered neural network. The inputs are propagated through the network

layer-by-layer to produce a series of numbers as output. These outputs are then decoded.

Learning occurs by feeding in training inputs, observing the output, and providing an error-

correction signal which is backpropagated through the network, adjusting the strength of

the connections between neurons as needed. These ideas have been applied to a broad spec-

trum of learning problems, including program learning. Some approaches have used neural

networks to replicate the input/output relation encoded by a programs without learning an

interpretable representation of the program itself (Graves et al., 2014; Reed & de Freitas,

2015; Joulin & Mikolov, 2015). We are more interested here in neural program synthesis,

using a neural network to transform observed data into an explicit program representation

(Balog et al., 2017; Bošnjak et al., 2017; Gaunt et al., 2016; Chen et al., 2019).

We focus specifically on RobustFill (Devlin et al., 2017), a neural sequence-to-sequence

encoder-decoder model with attention. It is specifically designed for program induction do-

mains specifying tasks via input/output pairs. Intuitively, RobustFill separately encodes

each observed input and output. It then decodes each observation into a distinct distribu-

tion over programs by producing a distribution over the first symbol in the program, then

the second, and so on. These per-observation distributions are then combined and inter-

preted to produce a single distribution over the next symbol in the program. RobustFill

can be interpreted as a form of stochastic search but is so different in its implementation

and dynamics from genetic programming or probabilistic sampling that we investigate it

separately. The use of an attention network allows RobustFill to learn which parts of the

input representations are most important for constructing the output representations, and

similarly, which parts of the output to use to inform the construction of the program.

The model thus consists of three components, each of which is parameterized by a Long

Short-Term Memory (LSTM; Hochreiter & Schmidhuber, 1997) recurrent neural network:

an input encoder, output encoder, and a program decoder. Our implementation is nearly

175

identical to the Attn-A RobustFill model from Devlin et al. (2017). For each input-output

example: the input encoder encodes the input example; the output encoder encodes the

output example while attending to the hidden states of the input encoder; and the decoder

attends to the hidden states of the output encoder and produces a hidden state for each

decoding timestep. This process is done separately for each input/output pair, and the

decoder hidden states for each IO pair are max-pooled to produce a final output vector which

is used to produce a distribution over program tokens. The model differs from the Attn-A

RobustFill model by adding a learned grammar mask. As in Bunel et al. (2018), we also

learned a separate LSTM language model over the program syntax. The output probabilities

of this LSTM are used to mask the output probabilities of the Robustfill model, encouraging

the model to put less probability mass on grammatically invalid sequences.

The model uses standard supervised, teacher-forcing techniques for training for sequence

to sequence models, minimizing cross-entropy loss on the training data. We used a hidden

size of 512 and an embedding size of 128. We trained the network for 3 days. This meant

approximately 105,000 iterations with a batchsize of 16 programs (∼1.6 million random

programs seen during training). Training programs could have a maximum depth of 6, and

each was associated with 1 to 10 input/output pairs, with the number of examples being

sampled uniformly at random for each program.

6.3.5 HL

Details of the HL model architecture are given in Chapter 4. Briefly, HL is a model of learning

as hacking: it adopts representations, objectives, and learning mechanisms motivated by the

child as hacker. It searches over the space of Term Rewriting Systems (TRSs), each of which

serves as a program specifying the syntax and semantics of an entire programming language.

This allows HL to add and remove primitives and adapt the meaning of existing primitives

to fit observed data. It models learning as the iterative application of a toolkit of structured

revisions, searching for meta-programs describing how a TRS is constructed rather than

searching directly for the TRS itself. HL uses Monte Carlo Tree Search (MCTS) to construct

a longterm memory which helps it avoid repetition and balance exploration of relatively

unknown meta-programs against exploitation of known meta-programs. It uses multiple

176

context-dependent objective functions sensitive to the complexity of the meta-program, the

complexity of the TRS, the accuracy of the TRS in explaining observed data, and the ability

of the TRS to generalize sensibly on novel inputs. Finally, HL supports online learning by

pruning its tree as new information becomes available.

For these experiments, we restrict HL to learn only deterministic TRS. We restrict the

MCTS tree to a maximum depth of 50 steps or the complete application of 7 learning

mechanisms, whichever comes first. In between trials, we retain paths to the 100 top-scoring

solutions discovered in the previous trial. The grammar-based prior over TRS rules is set

so that the probability of adding each additional rule is 1
2

and the probability of selecting a

given variable or constant is 50% higher than selecting function application, the only operator

with an arity greater than 0. The generalization likelihood used 𝛼 = 0.001. The accuracy

likelihood discounted previous trials with a discount factor of 𝜆 = 0.9 and constructed traces

of with a maximum of 25 evaluation steps and a maximum term size of 200. It used a normal-

order evaluation strategy—i.e. it always rewrote using the rule which applied to the left-most,

outer-most part of the term—and only assigned probability mass to the final output of the

trace.

6.4 Results

Every model completed each of the 100 problems, making predictions for every trial seen by

human participants. Figure 6-1 compares each model to human performance. One striking

feature of the figure is how many concepts there are for each system in which the model

never makes a correct prediction. While there are only 19 such concepts for HL, there are 36

for Fleet, 64 for Metagol, 70 for Enumeration, and 72 for RobustFill. That is, three of the

comparison models fail to produce a single correct answer for approximately two-thirds of the

concepts. By contrast, there are 0 such concepts for humans. Moreover, for the concepts on

which they have positive performance, many of the models do a poor job of predicting human

performance. In many cases, they are accurate for concepts which humans find difficult and

inaccurate for concepts which people reliably produce correct responses.

Another interesting feature of these data is that the performance of the models is roughly

177

HL (Hacker)

Fleet (Stochastic Search)

Metagol (Proof−Guided Search)

Enumeration (Exhaustive)

RobustFill (Neural Program Synthesis)
c0

45
c0

72
c0

80
c0

61
c0

50
c0

48
c1

00
c0

79
c0

43
c0

38
c0

42
c0

22
c0

21
c0

41
c0

70
c0

52
c0

44
c0

37
c0

11
c0

06
c0

46
c0

93
c0

95
c0

16
c0

49
c0

71
c0

68
c0

01
c0

90
c0

97
c0

91
c0

34
c0

62
c0

96
c0

81
c0

02
c0

51
c0

67
c0

30
c0

17
c0

92
c0

77
c0

98
c0

07
c0

66
c0

53
c0

47
c0

64
c0

78
c0

75
c0

25
c0

87
c0

13
c0

69
c0

65
c0

03
c0

20
c0

82
c0

99
c0

08
c0

55
c0

29
c0

09
c0

04
c0

18
c0

12
c0

94
c0

86
c0

56
c0

28
c0

60
c0

57
c0

33
c0

14
c0

83
c0

19
c0

88
c0

40
c0

85
c0

73
c0

27
c0

26
c0

59
c0

74
c0

31
c0

54
c0

24
c0

10
c0

23
c0

32
c0

58
c0

39
c0

84
c0

36
c0

05
c0

63
c0

89
c0

35
c0

76
c0

15

10

30

50

70

90

10

30

50

70

90

10

30

50

70

90

10

30

50

70

90

10

30

50

70

90

Concept

M
ea

n
P

er
fo

rm
an

ce
 (

%
)

Figure 6-1: Mean accuracy (y-axis) on each concept (x-axis) by model (subplots). Concepts
are ordered by mean human accuracy. Error bars are bootstrapped 95% CIs and gray region
is human mean accuracy.

nested. With only two exceptions, Enumeration has non-zero performance on the same 28

functions as RobustFill, as well as 4 additional functions. These exceptions are the list [8,

2, 7, 0, 3] and concatenate [9, 6, 3, 8, 5] with the input, two functions using constants that

might be easier to pick out using a neural network than to enumerate. Similarly, Fleet has

non-zero performance on all of the 30 functions which Enumeration learns, as well 34 more

for a total of 64. These include the two which RobustFill catches that Enumeration missed.

HL’s non-zero performance includes all but three of the functions from Fleet, including all

the functions hit by RobustFill and Enumeration, as well as an additional 20. For two of

these three, reverse the list and select the maximum element, Fleet gets a few trials right by

memorizing special cases which reoccur by chance rather than reflecting a general algorithm.

Only for remove the first 𝑁 + 1 elements, 𝑁 = element 1, does it learns a working algorithm

that HL never captures. Metagol does not fit quite as neatly into the nesting, but it only

178

has non-zero performance for two concepts on which HL is not also accurate at least some of

the time. On one of these, replace the first element with the last, it gets a few trials right by

randomly guessing a number with which to replace the first element. On the other, remove

all but element 𝑁+1, 𝑁 = element 1, it stochastically selects a number of elements to remove

rather than learning a recursive rule. In only one instance, then, does a comparison algorithm

find a general solution where HL finds no solution, and for only three other problems does a

comparison algorithm discover a partial solution where HL does not also discover at least a

partial solution.

By contrast, HL uniquely discovers partial solutions to 16 problems. That is, for these

16 problems, HL is the only model to produce one or more correct responses. For 11 of

these, its accuracy is greater than 25%. Table 6.3 lists these 11 concepts and a learned

meta-program along with the mean performances of HL and human participants. HL does

not always closely predict human performance, but in so far as it is the only model which

makes any correct predictions on any of these 11 concepts, it is also the most accurate. The

meta-programs show that the key to HL’s performance here is its ability to rely on structured

revisions like MemorizeAll, Generalize, Recurse, AntiUnify, and so on. For none of these

11 is random sampling part of the learned meta-program. By contrast, all of them rely on

the ability to closely analyze the data using MemorizeAll and then perform abstractions

via AntiUnify and Variablize to expose the data’s latent structure. Several also rely

on refactoring moves like Recurse and Generalize; these moves typically make a solution

worse, but they setup future revisions which can dramatically improve the overall value

of a hypothesis. In short, the ability to systematically explore hypothesis-driven changes

to candidate meta-programs, including the continued exploration of seemingly suboptimal

solutions, is essential to explaining cases where HL is unique among the models examined

here in explaining why certain concepts might be learnable for humans.

Figure 6-2 examines the relationship between human and model predictions more closely.

Each subfigure plots the relationship between a particular model’s mean accuracy and human

accuracy on each concept. In terms of overall variance examples, no model provides a

particularly compelling account of human performance. This is due at least in part to

the number of concepts for which the models provide no correct predictions at all. When

179

Accuracy (%)

Description & Meta-Program HL Humans

repeat every element 2 times in order of appearance 0.80 0.86
TRS.MemorizeAll().Recurse(. . .).AntiUnify().Stop()

swap elements 1 and 3 and elements 2 and 4 (0–9) 0.73 0.47
TRS.MemorizeAll().AntiUnify().Variablize(. . .).Variablize(. . .).Variablize(. . .).Stop()

elements 3, 2, 1, the number 4, then elements 5 and 7, in that order 0.73 0.39
TRS.MemorizeAll().AntiUnify().Stop()

swap elements 1 and 3 and elements 2 and 4 (0–99) 0.71 0.42
TRS.MemorizeAll().AntiUnify().Variablize(. . .).Variablize(. . .).Variablize(. . .).Stop()

replace elements 1 and 2 with element 3 0.66 0.29
TRS.MemorizeAll().AntiUnify().Variablize(. . .).Variablize(. . .).Stop()

swap elements 1 and 4 if element 2 = element 3, else swap elements 2 and 3 0.66 0.33
TRS.MemorizeAll().AntiUnify().Variablize(. . .).Variablize(. . .).Variablize(. . .).Stop()

add 2 to every element 0.55 0.68
TRS.MemorizeAll().Recurse(. . .).Generalize(. . .).AntiUnify().Stop()

the first 6 elements 0.53 0.48
TRS.MemorizeAll().AntiUnify().Stop()

swap elements 4 and 8 0.47 0.30
TRS.MemorizeAll().AntiUnify().Variablize(. . .).Variablize(. . .).Stop()

replace element 6 with a 3 0.40 0.43
TRS.MemorizeAll().AntiUnify().Variablize(. . .).Stop()

concatenate input and [7, 3, 8, 4, 3] 0.29 0.68
TRS.MemorizeAll().Recurse(. . .).AntiUnify().Variablize(. . .).Stop()

Table 6.3: Concepts for which HL performs above 25%, while alternative models fail to give
a single correct response, along with a representative meta-program learned by HL, HL’s
mean accuracy, and human mean accuracy.

examining just those concepts for which the models have non-zero accuracy, the fits are

slightly better but again, the models leave most variance unexplained. The coefficient of

determination, however, tells an incomplete story. For example, RobustFill and Enumeration

have the highest 𝑅2 values for concepts with non-zero performance, but this is largely because

most of the concepts for which they make any accurate predictions were both easy for humans

and for the models. There are very few cases where either model accurately predicts low

or moderate levels of performance. Moreover, HL seems to more closely predict human

accuracy for far more concepts than the other models. Because there are a few significant

inaccuracies, the total variation explained remains low. The median absolute error (MAE),

however, is much lower for HL than for the other models.

To examine this last point more closely, we computed the difference between humans and

models for each concept. Figure 6-3 plots these values, focusing particularly on the models

which are closest to human performance for each concept. For 82 of the 100 concepts, HL

is either the closest to predicting human performance or within 5%, and there are only 2

180

MAE = 0.398
R2 = 0.126 (0.466)

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

Model Mean Accuracy

H
um

an
 M

ea
n

A
cc

ur
ac

y

(a)

MAE = 0.402
R2 = 0.089 (0.434)

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

Model Mean Accuracy

H
um

an
 M

ea
n

A
cc

ur
ac

y
(b)

MAE = 0.411
R2 = 0.011 (0.024)

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

Model Mean Accuracy

H
um

an
 M

ea
n

A
cc

ur
ac

y

(c)

MAE = 0.304
R2 = 0.081 (0.239)

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

Model Mean Accuracy

H
um

an
 M

ea
n

A
cc

ur
ac

y

(d)

MAE = 0.189
R2 = 0.107 (0.2)

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

Model Mean Accuracy

H
um

an
 M

ea
n

A
cc

ur
ac

y

(e)

Figure 6-2: A comparison of program induction models plotting mean model accuracy against
mean human accuracy. MAE lists the median absolute error across all concepts, and 𝑅2 lists
the overall coefficient of determination for all concepts and, in parentheses, for concepts on
which the model made at least one correct prediction. (a) RobustFill; (b) Enumeration; (c)
Metagol; (d) Fleet; and (e) HL.

for which it is more than 20% away from being the closest. By contrast, Fleet is within 5%

for only 43 concepts, Metagol for 36, Enumeration for 36, and RobustFill for 35. Moreover,

HL’s absolute difference from human performance is less than 25% for 61 of the 100 concepts,

while these numbers are significantly lower for other models (Table 6.4).

Figure 6-4 reinforces this point by plotting the distribution over absolute error between

humans and models for each model. RobustFill, Enumeration, and Metgaol have an approx-

imately equal MAE, and their absolute errors appear to be fairly uniformly spread between

0 and 0.8, near the ceiling for human performance in this experiment. That is, they are

roughly as likely to capture human performance perfectly as they are to learning nothing for

a concept that humans learn after one or two trials. Fleet is notably better, but a quarter

of the concepts have an absolute error greater than 50%. HL is significantly better in this

regard than any comparison model. The cases in which it significantly deviates from hu-

mans, however, are telling. All but one concept for which HL has an absolute error greater

than 50% require recursive reasoning. While HL has the ability to represent certain kinds

of recursion, the way it does so (or fails to do so) does not match the ways in which humans

solve these same problems. This problem appears widespread; recursive concepts appear

disproportionately difficult for all five models. By contrast, 26 of the 30 concepts for which

HL is within 10% of human performance rely on pattern matching and case-based reasoning.

Only four require recursive reasoning, and of these, human performance was near zero for

one and near ceiling for another. Only two represented moderately difficult recursive prob-

181

0.00

0.25

0.50

0.75

1.00
c0

02
c0

48
c0

50
c0

39
c0

89
c0

11
c0

31
c0

21
c0

09
c0

53
c0

22
c0

18
c0

52
c0

32
c0

28
c0

07
c0

01
c0

45
c0

43
c0

15
c0

27
c0

24
c0

36
c0

19
c0

40
c0

08
c0

16
c0

72
c0

35
c0

17
c0

91
c0

34
c0

04
c0

23
c0

90
c0

87
c0

81
c0

44
c0

10
c0

76
c0

06
c0

84
c0

30
c0

92
c0

93
c0

82
c0

86
c0

71
c0

63
c0

42
c0

58
c0

83
c0

41
c0

59
c0

05
c0

47
c0

13
c0

51
c0

25
c0

46
c0

14
c0

03
c0

12
c0

56
c0

49
c0

62
c0

55
c0

29
c0

54
c0

33
c0

61
c0

94
c0

74
c0

57
c0

26
c0

73
c0

85
c0

88
c0

20
c0

60
c0

68
c0

99
c0

78
c0

65
c0

37
c0

75
c0

69
c0

77
c0

64
c0

66
c0

98
c0

67
c0

38
c0

96
c0

95
c0

97
c0

70
c1

00
c0

79
c0

80

Concept

D
iff

er
en

ce
Source HL Fleet Metagol Enumeration RobustFill

Figure 6-3: Difference of mean model accuracy from mean human accuracy (y-axis) for each
concept (x-axis) by model (colored dots). Line plots minimum difference. Points in shaded
region are within 5% of minimum difference.

lems. The more general point is then that HL appears to excel at capturing pattern-based

and conditional reasoning in people, while its dynamics for recursive reasoning are not yet a

good match for humans.

The main hypothesis of this chapter is that its diversity of structure-sensitive learning

mechanisms enable it to better account for learning than the comparison models. Part of

accounting for human learning is being sensitive to the same kinds of structure in the same

ways. The preceding analysis of HL’s absolute errors touches on this subject. To investigate it

further, we fit a logistic model like that in Figure 5-6b for each learning model. We specifically

predicted the model’s trial-by-trial accuracy using the semantic features associated with each

concept. That is, for each kind of learner, human, HL, Fleet, and so on, we used the concept-

specific features described in Chapter 5 to explain the performance of that learner. We then

compared the coefficients of these models against the coefficients determined from human

learners in Figure 5-7. Figure 6-6 shows the results of this analysis. For each feature, it plots

the coefficients for humans, followed by the coefficients for each model.

Several results stand out. First, HL is the only model to capture both the quantitative

scale and qualitative pattern humans display for visibility, in which an increase in hidden

symbols makes a concept harder than an increase in semi-visible symbols which in turn

makes a concept harder than an increase in visible symbols, which actually may have an

182

Non-Zero Best ±5% |Error| < 25%

RobustFill 28 35 33
Enumeration 30 36 30
Metagol 36 36 25
Fleet 64 43 43
HL 81 82 61

0.00

0.25

0.50

0.75

HL Fleet RobustFill Enumeration Metagol
Model

D
iff

er
en

ce
 fr

om
 M

ea
n

H
um

an
 A

cc
ur

ac
y

Recursive Non−Recursive Recursive

Table 6.4 & Figure 6-5: Table: A summary of model performance relative to human learners,
including the number of concepts for which each model gives non-zero performance, the
number for which it is within 5% of providing the closest prediction of human accuracy,
and the number of concepts for which each model’s absolute error in predicting human
performance is greater than 25%. Figure: Differences between mean human accuracy and
mean model accuracy (dots) summarized with a Gaussian kernel density estimate (colored
regions). Red dots indicate recursive concepts. The crossbar plots the median with a 95%
bootstrapped CI.

overall positive effect on learning.

Second, HL accurately captures the approximate contribution of several semantic fea-

tures, including counting, the use of conditionals, and the relative insignificance of the num-

ber of variables. All models in fact found that concepts requiring counting knowledge were

easier to learn than other concepts. This is perhaps surprising in that none of the primitives

specifically supported any sort of counting-based reasoning.

Third, there are several cases where HL fails to accurately capture the contribution of

other effects, as with the use of numbers greater than ten, the role of internal arguments,

and recursion. Fleet and Metagol capture the insignificance of the changes in alphabet size

marked by ≥ 10. HL associates a moderate penalty with larger alphabets, perhaps because

numerical information is not currently represented in such a way that its internal structure

is exposed to HL’s learning mechanisms. This would make certain kinds of mathematical

operations more difficult to discover. As expected, however, enumeration and Robustfill are

strongly and negatively impacted by the larger alphabet. Surprisingly, all models found

183

−5.0

−2.5

0.0

2.5

Hidden Semi−Visible Visible Counting Conditional Variables ≥ 10 Internal Argument Recursive

Feature

M
ea

n
C

oe
ffi

ci
en

t
Source Humans

HL
Fleet
Metagol

Enumeration
RobustFill

Figure 6-6: Regression coefficients for a series of feature-based logistic models, one for humans
as well as for each learning model. Error bars are 95% CIs.

that the use of internal arguments made concepts easier to learn rather than more difficult,

though HL is closest to matching humans. Finally, and as noted earlier, all models found

recursion far more difficult than humans. The model LOT includes fix, a basic operator for

constructing recursive functions, but it does not provide any specific utilities for common

recursive patterns like mapping, filtering, or folding. Moreover, none of the models, including

HL, are designed to identify signatures of, say, folding as opposed to mapping, or filtering as

opposed to folding. These may be necessary to mimic human reasoning for recursive tasks.

In short, this analysis shows that HL captures a broader set of the structural influences

on learning detected in Chapter 5 than the comparison models. This analysis also serves as

a roadmap for future work in that it clearly identifies aspects of learning, such as recursive

reasoning, where each model fails to capture human performance.

6.5 Discussion

This work provides an initial demonstration of the empirical value of the child as hacker

hypothesis. It compared HL, a hacker-like model of inductive learning, against several alter-

184

native models of learning as programming. It has shown that HL more accurately predicts

human learning performance than the comparison models in a richly structured domain with

complex, rule-like concepts. It also identifies the ability to recognize structured relationships

between input and outputs, particularly pattern-based and case-based reasoning, as playing

a key role in HL’s ability to accurately predict human learning performance for list functions.

HL is based on fundamental insights about the representations, values, and techniques of

hacking that work in concert to provide a novel algorithmic-level model of learning. The rela-

tively poor fit of all models—not one fits nearly as tightly as a simple feature-based regression

(Figure 5-8)—indicates that a great deal of work remains to be done to fully apply these

ideas. All told, however, these results set the stage for a new generation of computational

models based on applying insights from hacking to better understand the algorithmic-level

dynamics of learning and the representational substrate supporting them.

Perhaps the most important lesson to draw from these results is that learning algorithms

based on iteratively updating hypotheses by means of structured, semantically-sensitive re-

visions are better able to explain the dynamics of human inductive learning than competing

models based on local search methods such as exhaustive or stochastic search. HL was

explicitly motivated by these concerns and learns more concepts more accurately than the

competing models examined here. It is also better able to capture the structural sources

of difficulty observed in human performance. This suggests that the standard approach of

explaining learning difficulty as a function of description length in a model LOT must be

enriched to include more of the factors which cognitive psychologists have argued are central

to learning. Computational accounts of learning would benefit by incorporating features like

hypothesis-and-goal-driven search through patterns of constructive thinking (Carey, 2009;

Lombrozo, 2019; Chu et al., 2019), a detailed sensitivity to the context-specific merits of a

hypothesis (Schulz, 2012a), and the possibility of genuine conceptual change (Gopnik, 1983;

Carey, 1985; Barner & Baron, 2016) by means of conceptual systems defined via conceptual

role. Hacking and, more generally, the field of computer science have discovered techniques

analogous to many of these aspects of learning and thus serves as a rich source of hypotheses

for more realistic models of learning.

The approach we take in HL specifically relies on several essential ideas about hacking.

185

First, we recast program learning as language learning by learning programs which encode

the syntax and semantics of a domain-specific language (Fowler, 2010). The goal of learning

then becomes finding a language well-suited to the observed data—adding, removing, and

redefining primitives as needed. The decision to implement this approach using TRSs (Bezem

et al., 2003; Baader & Nipkow, 1999) focuses learning on identifying rules for evaluating input

programs into output programs. The format of these rules permits sophisticated forms of

symbolic pattern matching that make it possible to express the sort of structured relations

between input /output pairs that are so crucial to HL’s performance. Performing similar

sorts of pattern matching in more common formalisms like lambda calculus, combinatory

logic, or a fixed context-free grammar requires that either: the learner accomplishes the

unlikely task of developing a pattern matching program alongside the target program; or the

modelers implement pattern matching as part of the language, essentially extending it to

behave more like term rewriting. Similarly, TRSs are, by definition, composed of a series of

rules that naturally encode case-based reasoning. These rules can be learned independently,

each identifying a specific kind of structure in the data. Other formalisms must learn to

frame programs as a set of cases and typically must develop these cases concurrently to

form a syntactically valid program. In short, TRSs provide basic representational tools for

pattern matching, conditional reasoning, and framing learning as language evolution that

appear to be cognitively important and which are lacking in the basic machinery of other

common formalisms.

Second, HL adopts complex context-sensitive objective functions which allow it to trade

off the contributions of multiple dimensions of value. The use of complex objectives helps

the model to decouple the process of generating a program from the structure of the program

itself while still being aware of both. Each can be represented by a separate term in the

objective function and traded off against one another. Making these objective functions

context-sensitive allows HL to care more about the description length of the program itself

when reasoning about how likely a hypothesis is to generalize, and less when deciding which

partial hypotheses to extend.

Third, HL adopts a diverse range of learning mechanisms which are sensitive to various

kinds of structure in the current hypothesis. These are perhaps the most important feature

186

for allowing HL to dissociate the complexity of discovering a program from the complexity

of the program itself. The iterative application of these mechanisms can quickly transform a

complex set of rules into a fairly compact and highly general description of the same underly-

ing dynamics. This dissociation, in turn, allows HL to quickly learn certain kinds of complex

programs, namely those whose structure matches the structures which the various mecha-

nisms can detect and exploit. MemorizeAll is particularly important in this regard, because

it makes the structure of the observed input/output pairs available to HL for scrutiny. It

allows HL to treat them as a sort of degenerate language which can be revised and general-

ized into a mature domain theory. This sort of sensitivity to structure in the data goes far

beyond simply tallying the number of correctly predicted observations—a common practice

in AI/ML—and seems to be a key piece of human learning often missing in computational

models.

This initial comparison does not fully disentangle the contributions of these various el-

ements. This is partially because these ideas build on one another in complex ways. The

pattern-based, case-based approach of term rewriting not only makes it possible to tailor

the LOT to data, but it makes many of the revision-based learning mechanisms technically

feasible. Similarly, the use of an iterative, revision-based approach to learning relies on ob-

jective functions that are sensitive to the possibility for future revisions to improve existing

hypotheses. More work remains to carefully explore the relative contributions of each el-

ement Even so, these initial results show that their total effect of HL’s architecture is to

provide a model which is more sensitive to features which impact human learning in our

data. It also demonstrates the potential for hacker-like models to explain human learning

more accurately than models inspired by learning as programming more generally.

That said, this work is only a first step. For example, the primitives with which the models

were equipped are almost certainly insufficient to accurately model the relevant domain

knowledge people bring to the list transformation domain. We used a small language here to

emphasize the importance of a diverse and hacker-like set of learning mechanisms, but this

decision likely harmed the fit of all models. Extending the set of primitives and providing

HL with facilities for taking greater advantage of the input/output patterns associated with

these primitives is a key area for future research. Perhaps the most urgent need is for

187

richer patterns of recursive reasoning. That said, the decision of which primitives to include,

without an extensive and costly analysis (e.g. Piantadosi et al., 2016), is ultimately subjective

and can be tuned to favor nearly any search algorithm. Enumeration, for example, could

easily learn the 100 concepts tested given here if each were provided as a primitive, and

various dummy primitives could be added such that it could perfectly model our human

data.

The work we have done here demonstrates potential limits of simple computational-level

algorithms as domains grow more complex and the precise dynamics of learning become more

important for explaining humans patterns of generalization. At the same time, it proposes a

model which only begins to close the gap between previous computational models and human

learners. A great deal of work thus remains to produce any model which can compellingly

capture the dynamics of learning even for seemingly simple domain like the list functions

studied here.

188

Chapter 7

Conclusion

This thesis presented the child as hacker as a hypothesis about distinctively human-like

learning. The hypothesis revolves around hacking—iteratively improving code through the

internally-motivated and actively-managed pursuit of goals via diverse and open-ended sets

of values and techniques. It claims that the representations, objectives, and mechanisms of

hacking form a rich source of concrete hypotheses about human learning.

We then applied these ideas to construct, HL, a hacker-like model of inductive learn-

ing which builds on, but is importantly different from, existing program-induction-based

learning models and is designed to reflect core principles of hacking. HL frames learning as

the iterative development of an entire LOT. It uses objective functions favoring accuracy,

well-formedness, discoverability, and simplicity and varies them in context-sensitive ways to

entertain and revise hypotheses which are suboptimal but nonetheless contain useful struc-

ture. HL also uses a diverse set of structured learning mechanisms to iteratively explore a

space of meta-programs describing compact generative processes for fitting an LOT to data.

We also introduced list functions as a domain for psychological investigation. Despite

sharing many positive features with classic concept learning domains and a long history in

artificial intelligence, this domain is relatively unknown in psychology. Even so, the com-

bination of psychological familiarity, rich structure, algorithmic sophistication, and formal

tractability make them a prime candidate for studying inductive learning.

A significant body of normative arguments and empirical results show that learners prefer

simple hypotheses and find them easier to learn. The child as hacker, meanwhile, emphasizes

189

the diversity of values and mechanisms available to learners, many of which are tailored to

exploit structure in data in ways that might dissociate the complexity of learning a concept

from the complexity of the concept itself as expressed in some mental lexicon.

We therefore conducted a large scale investigation of human and machine concept learn-

ing. We facilitated an online concept learning experiment over 250 list functions designed

to capture a wide range of learning difficulties and algorithmic operations. Our results show

that in such a richly structured domain, simplicity—as measured by a concept’s description

length—predicts human learning. Predictions are much stronger, however, when the seman-

tic features of individual concepts are taken into account. As part of this work, we develop a

notion of visibility based on how transparently a symbol in a model LOT expression affects

its input/output relation and show that the visibility of a symbol strongly modulates its

overall contribution to learning difficulty. These results are unexpected if learning is primar-

ily governed by a concept’s description length in some mental language. Finally, we show

that HL’s structure-sensitive architecture more accurately predicts human performance in

the list function domain than competing benchmark models of learning as programming.

Its improved performance critically relies on its relative sensitivity to the semantic features

which are so important for human learners.

We draw three conclusions from these results. The first conclusion is that the idea of

hacking as the way people make code better can productively inform our hypotheses about

learning. It has done so in at least four ways throughout this thesis. First, it suggested ways

to explain developmental phenomena as a natural result of revising programs using a diverse

set values and activities. While these ideas have not been explored in detail for the domains

mentioned—small number addition, acquiring a count routine, learning there is no largest

number, mastering a kinship system, or learning a formal theory like Mendelian inheritance—

these examples make the broader point that hacking is a deep metaphor that provides a

wealth of concrete hypotheses to explore. Second, the emphasis on the algorithmic character

of thought led us to list functions, a new domain for studying human concept learning.

Third, it suggested specific techniques to serve as a bridge between findings in cognitive

psychology and computational tools for modeling them. These included the development of

domain-specific languages, the iterative revision-based pattern underlying hacking, and the

190

maxim of avoiding premature optimization. These then drove the development of a model

based on formal tools—including term rewriting, meta-programming, and Monte Carlo tree

search—that helped to provide a more explanatory model of learning.

The second conclusion is that the idea of hacking has also helped us begin to capture

cognitvely rich aspects of learning as thinking. Computational models of learning have grown

significantly richer over the last decade or so in terms of the representations they use. Instead

of the small and easily-enumerable hypothesis spaces of 20 years ago (e.g. Tenenbaum, 2000),

Turing-complete formalisms are now increasingly common. Even so, models remain fairly

similar in terms of their objective functions and learning mechanisms. Moreover, even where

expressive formalisms are in use, they are often theoretically expressive without being prac-

tically useful. The set of background knowledge is typically small, and the formalisms rarely

include innovations from programming language theory in pattern-matching, case-based rea-

soning, or sophisticated type systems. Yet, expressive representations and a diverse set of

values of learning mechanisms are well attested both in learners and in the ways people write

programs. The work in this thesis has begun to bring together several rich aspects of learn-

ing into a single model: analogy, goal-and-hypothesis-driven search, a willingness to tolerate

errors that can be fixed later, and the need to base mental representations on conceptual

systems defined according to inferential role. Our evaluation of this model suggests that

while humans favor simple hypotheses and find them easier to learn, they may have also

developed learning mechanisms that are sensitive to certain kinds of structure in observed

data. These mechanisms perhaps allow them to dissociate the complexity of a program from

the effort required to find it, quickly narrowing search to a small set of programs which,

despite their complexity, are still likely the simplest explanations of the data. This suggests

the need for a richer understanding of simplicity that goes beyond description length in a

proposed language of thought to incorporate the rich interaction of data, changing objec-

tives, and diverse learning mechanisms. Simplicity is not measured purely in terms of the

final concept but also in terms of the generative process giving rise to that concept.

The third conclusion is that the child as hacker not only provides a roadmap for psy-

chological work, but it also points the way toward more powerful algorithms for machine

learning. This is not the main focus of the thesis, but the fundamental tools underlying the

191

models to which we compared HL were originally designed not to explain human learning

but as powerful, general-purpose, machine learning systems. In a domain with a long history

in artificial intelligence, list functions, our results showed that taking cues from hacking can

provide a better learning algorithm.

In sum, this thesis has set the stage for a new generation of models framing learning as

hacking in an effort to provide a computationally precise account of the richness and power

of human learning. Still, all of the work here is just a first step. We are far from anything

resembling a computationally precise account of learning and have only taken initial steps

toward using hacking to improve the richness of our models. The rest of this final chapter

considers the implications of these findings for future computational models of learning, the

child as hacker hypothesis, and our understanding of learning more generally.

7.1 Representations

The model in this thesis treats the LOT as a term rewriting system. It does so as a way

of combining the psychological processes of conceptual change and the development of dis-

tinct conceptual systems with the hacker’s practice of developing domain-specific languages.

Unlike common alternatives such as probabilistic context-free grammars, lambda calculus,

or combinatory logic, term rewriting defines a sort of meta-grammar, a uniform interface

in which individual expressions define the syntax and semantics of entire programming lan-

guages, modeling learning not as the acquisition of individual programs but as the evolution

of the entire LOT in response to data. It natively supports a number of tools like symbolic

pattern matching and case-based reasoning which appear important for human-like concept

learning.

A good model of mental representations, however, must be able to naturally represent

both the products of learning and the mechanisms by which learning occurs. Many, if not

most, of our values and learning mechanisms are likely to be learned. They are frequently

woven into the very fabric of the conceptual systems to which they are most relevant1. For

1This is argubly why metaphor is so important to human-like cognition (Dreyfus, 1992; Baum, 2004).
Many useful tools for learning are perhaps embedded in domain-specific conceptual systems; metaphor and
analogy are necessary to usefully transfer them to other domains.

192

example, the sensitivity to counting information people demonstrated in Chapter 5 is almost

certainly learned, because it explicitly requires knowledge about number and the count

routine, which are themselves learned. If so, these values and mechanisms are the output of

learning, which means that they are program-like mental representations. Moreover, they

are program-like representations that are then later used to pull apart, analyze, and reason

about other program-like representations. The very system by which we learn is itself a

product of learning.

In this, term rewriting shares a basic problem with other common formalisms. It, like

lambda calculus or combinatory logic, is extensional. For a programming formalism, this

means that two programs which behave identically cannot be distinguished within the for-

malism, even if they are implemented differently. More to the point, the internals of program

structure cannot be reasoned about except in so far as they affect behavior. Extensional for-

malisms have no facilities for pulling apart, analyzing, and reconfiguring their own programs.

This means, for example, that there is no term rewriting system which can determine some-

thing as simple as whether two other term rewriting systems are syntactically equal. If

learning is a system of programs that pulls apart, analyzes, and revises itself, however, then

an accurate model of learning may require an intensional formalism.

Barry Jay and colleagues have developed a new family of intensional formalisms that,

like lambda calculus or combinatory logic, are extremely minimal (Jay, 2009; Jay & Given-

Wilson, 2011; Jay, 2016; Jay & Vergara, 2017; Jay, 2019). The most sophisticated of these

is SF calculus (Jay & Given-Wilson, 2011), a system which behaves very similarly to SK

combinatory logic but supports intensional computation and can be easily extended to sup-

port many of the advantages of term rewriting, including: variable binding, symbolic pattern

matching, type systems, and case-based reasoning. An exciting path for future work would

be to reformulate the approach taken here in terms of a formalism like SF calculus. The ulti-

mate effect would be to have an entire LOT-learning system specialized for the development

of DSLs that is implemented in the language which it itself uses for learning. Future work

could then investigate not only more accurate mechanisms for learning conceptual systems,

but it could investigate how the learning mechanisms themselves are learned. The similarity

between SF calculus and SK calculus would also lend itself to adapting the work of Pianta-

193

dosi (2016), providing a plausible pathway from high-level symbolic reasoning to a neural

implementation.

7.2 Objectives

Hacking is driven by the active management of a rapidly evolving set of internally generated

goals. Our approach takes a step in this direction by adopting two objective functions

deployed for different tasks during learning. Together, they allow a learner to entertain

and revise suboptimal hypotheses while still being aware of their inadequacies as a final

explanation of the data. Moreover, these objectives are sensitive to the contributions of

several dimensions of value including: accuracy, simplicity, discoverability, and the ability to

produce well-formed guesses for novel inputs. These dimensions help the model to decouple

the process of generating a program from the structure of the program itself while still being

aware of both. Each can be represented by a separate term in the objective function and

combined in complex ways, such as favoring either a simple process or a simple program

during search while favoring the simplest process that generates the simplest program after

search concludes.

Still, this is a far cry from an agent that: chooses its own values; uses its current values

to select goals; actively manages its goals by deciding when to abandon, narrow, broaden, or

set a goal aside for later reconsideration; adopts new goals, possibly from an unboundedly

large space of possibilities; and connects its goals to specifically relevant learning mecha-

nisms. Each of these abilities represents a significant, even daunting, challenge. How do we

operationalize values like clarity, modularity, or elegance? How do we define the space of

possible values? How do we connect values to goals and combine both into a meaningful

objective function? Even so, these questions represent relatively unexplored territory, both

computationally and empirically, and even first steps down any of these paths are likely to

provide more faithful models than those currently available. Moreover, the active goal man-

agement we see in hacking is likely deeply connected to the role of goals in curiosity (Kidd &

Hayden, 2015) and play (Chu & Schulz, 2020). Efforts to articulate these connections may

also inform our models of learning.

194

7.3 Learning mechanisms

The diversity of learning mechanisms which people bring to bear in daily life is a hallmark of

human learning, particularly the use of hypothesis-and-goal-driven search to enable learning

by thinking. The diversity of techniques which hackers bring to bear in revising code is sim-

ilarly a hallmark of hacking. Even so, the bulk of computational models in the learning as

programming tradition rely on a single learning mechanism. Our work in HL extends tradi-

tional single-technique models of learning by recasting learning as the iterative combination

of a toolkit of distinct learning techniques. It chains these techniques in context-sensitive

ways to form meta-programs describing the generative process by which individual programs

(in our case, term rewriting systems) can be constructed. This effectively decouples the com-

plexity of expressing how to create a program from the complexity of the program itself.

Learners (Siegler, 1996; Xu, 2019) and hackers (Fowler, 2018) make use of hundreds of

learning mechanisms, a much wider variety than the eleven which HL implements. These

eleven have not themselves been tied to specific learning mechanisms known to operate in

people. We therefore do not know whether these are among the most important mechanisms

to be studying, or how well they capture the individual dynamics of specific mechanisms

people use during learning. Detailed empirical study will be necessary to better understand

which kinds of revision are most useful for modeling human learning.

It is also almost certain that models which incorporate a broader set of known hacking

techniques—and which enrich the mechanisms for which HL has provided initial implementations—

will be necessary to accurately model human learning. A rich set of learning mechanisms

has the potential to make learning possible for large programs incorporating large sets of

primitives by moving search from the level of individual symbols in individual expressions

to the level of the structured generative processes by which entire expressions are created.

Recasting search in this way makes it imperative that we also associate each mechanism with

strong inductive biases that dramatically narrow the range of mechanisms which are likely

to be considered in any given context. Ellis and colleagues (Ellis et al., 2020; Ellis et al.,

2019; Ellis et al., 2018) have had great success in coupling symbolic learners with deep net-

works that reweight search options in context-sensitive ways. This has also been key in other

195

applications of Monte Carlo tree search algorithms like that used by HL (Silver et al., 2016;

Simmons-Edler et al., 2018). Ideally, however, our models are able to learn more structured

and more interpreatble sorts of biases that express the sorts of symbolic knowledge that

humans bring to these tasks. In the list function domain, for example, this might include

recognizing what distinguishes mapping (e.g. the same number of elements with the same

function applied to each) from filtering (e.g. potentially fewer elements in the same order as

in the original list sharing some common feature) from sorting (e.g. the same elements in a

potentially different order based on some ordering relation). This type of information can be

encoded in expressive type systems (Pierce, 2002) and learning algorithms exist which can

make use of this sort of information (Polikarpova et al., 2016; Osera & Zdancewic, 2015).

Learning how to identify these sorts of structured relations in the first place could provide

a path toward the strong, symbolic inductive biases necessary for searching in a space of

complex learning mechanisms. The key question here, then, is how we might build more

powerful learning mechanisms.

More generally, the approach taken by HL can been seen as a way to reparameterize

sampling. Rather than sampling at the level of programs, HL samples meta-programs,

which can be used to construct programs. This strict separation, however, may be a false

one. The SampleRule move, for example, simply lifts the program level to the meta-program

level, making it possible for meta-programs to transparently encode programs. Moreover,

there are even higher-level structures that are likely to be useful, such as learning to combine

two moves or to favor specific combinations of parameters within a move. By implementing

moves and meta-moves in a common framework, such as the intensional SF calculus discussed

earlier, it may be possible to remove the program/meta-program distinction and frame both

as expressions in a common language. This would then make learning inductive biases over

the primitive symbols and learning inductive biases over learning mechanisms the same kind

of learning, since each learning mechanism would be associated with a primitive symbol

and implemented in terms of other primitives. This would provide a significantly different

kind of LOT than has been explored in most learning as programming models to date.

These differences, however, would permit the complex interactions between data, learning

mechanisms, hypotheses, and objectives that we have argued are necessary to capture the

196

richness of human learning.

7.4 Conceptual systems

The models in this thesis framed the list function task as one of learning generative models

for output lists conditioned on input lists. We also focused exclusively on lists of natural

numbers. Humans, however, are likely capable of learning much more complex generative

models, such as that in Figure 3-2. Extending the work done here to test and model this kind

of learning in humans, as in Lake et al. (2015), would greatly strengthen the conclusions of

this thesis. What can people learn about lists of lists of numbers, or lists containing different

kinds of objects? What could they learn about trees, grids, or graphs? What other kinds of

operations are easy for people to learn? Which are difficult? Can people learn to generate

informative inputs for a concept? Can they generate new concepts that are similar to ones

they have seen, or which are entirely novel? Can they learn to identify families of related

concepts?

The tasks here also permit us to ask new kinds of questions, such as whether people can

learn different strategies for when rewrite rules are allowed to apply (e.g. Can all rules apply

at once? Can the same rule apply in multiple places? If not, how do we choose which place

to rewrite?), the extent to which they are sensitive to the number of rewrite steps required

to produce an output, and how learning varies with the number of rules to be learned.

Extending our work in this way would allow us to unify it with work on learning other

families of rule-based systems, such as fractal Lindenmeyer systems (Lake & Piantadosi,

2020).

Framing the explicit output of learning as an LOT also suggests the potential for large-

scale simulations exploring the way the LOT evolves over the course of multiple tasks. This

work would be very much in the style of other work on iterated learning (Dechter et al., 2013;

Ellis et al., 2018; Ellis et al., 2020) which explores the way an agent might learn to self-select

a curriculum of concepts that enables it to solve a large body of tasks. Work in which the

output of learning is an entire LOT could be importantly different, however, in that it could

learn entirely new data structures. That is, the ability to add new primitives and use them as

197

placeholders would allow it to associate latent structure with observed symbols. Over time

these associations could become familiar data structures like numbers or lists. Long-term,

this work could evolve into an exploration of how distinct domain-specific languages develop

within the same overall LOT (e.g. lists and numbers) and the ways in which these distinct

domain-specific languages evolve to interact toward solving complex problems (e.g. functions

over lists of numbers). It could also permit the study of questions which have largely eluded

computational models of development thus far, such as how a true concept of natural number

might develop in a learner who is not initially equipped with such a concept.

7.5 Hacking

It is perhaps surprising that we hypothesize hacking as a means for explaining human learn-

ing, when there has been much more study of learning than there has been of hacking.

Despite a great deal of practical literature written by hackers and software engineers about

hacking (e.g. Fowler, 2018, 2010; Martin, 2009; Thomas & Hunt, 2019), hacking is relatively

poorly understood as a cognitive activity. There are promising signs of increased scientific

interest in hacking (Fedorenko et al., 2019; Ikutani et al., 2020; Vuculescu et al., 2020), and

the semi-formal insights of hackers are ripe for transformation into an empirical theory of

how people make code better. It is one of our deep hopes that this thesis would highlight

the potential for progress in our psychological understanding of hacking and the critical role

which that progress could play in our understanding of learning. Hacking provides a space

where many of the relevant representations are explicitly available as code and modified us-

ing mechanisms similar to those hypothesized to underlie mental representations. Moreover,

it is a place where humans routinely and simultaneously navigate complex spaces of values,

goals, techniques, and programs, and some of these spaces are known to be Turing-complete.

As has been argued throughout this thesis, a detailed understanding of hacking provides

a clear path toward more capable algorithms for program synthesis and better models of

human learning and cognitive development.

198

7.6 Developmental phenomena

This thesis is deeply inspired by developmental psychology and the breathtaking powerhouse

that is a learning child. It is therefore sad that we have not directly grappled with specifically

developmental data: our contributions in Chapter 2 were largely speculative and illustrative.

Even so, the ideas discussed here have all been developed while trying to hold in tension

what we currently know how to do computationally with what children know how to do

effortlessly. The modeling tools we have developed are readily applicable to a number of

central case studies in development, including kinship, counting and the development of

natural number, arithmetic learning, the concept of infinity, intuitive biology, natural kinds,

and seriation. These critical cognitive achievements have been carefully studied empirically,

and many are associated with multiple computational models. None to our knowledge,

however, has a computational theory that fully accounts for all the known phenomena. We

are not so naive as to think the child as hacker will provide such a model anytime soon. It

provides a path, however, that if pursued diligently, will gradually lead us toward models

which likely can live up to that vision.

The list functions domain also provides a tractable way to examine the core computational

dynamics of several key milestones in children’s cognitive development. As discussed in

Chapters 3 and 6, some of the list functions we study already mimic basic tasks relevant

to the development of counting, natural number, arithmetic, and seriation. Moreover, the

way HL frames learning as the development of an LOT is a natural fit for the processes of

conceptual change proposed to underlie many of these conceptual achievements (Carey, 2009;

Barner & Baron, 2016). By systematically exploring different model LOTs and combinations

of learning mechanisms in HL, we may be able to rapidly develop even more compelling

models of the acquisition of the cardinal principle (Piantadosi et al., 2012; Carey, 2015),

the successor principle (Cheung et al., 2017), early arithmetic (Shrager & Siegler, 1998), or

seriation (Mareschal & Shultz, 1999; Schultz & Vogel, 2004; McGonigle-Chalmers & Kusel,

2019).

To help guide this sort of modeling work, we have begun empirical work to better charac-

terize children’s algorithmic abilities. For example, children’s transitions between algorithms

199

(a) (b) (c) (d) (e)

Figure 7-1: Othello paradigm: (a) the initially presented grid of binary chips; (b) a partial
demonstration for (c); (c–e) three complete patterns.

in small number addition, as described in Chapter 2, are remarkable in that they change

the procedures (the steps taken) without changing their meaning (the function computed).

Recall, for instance, that both the sum and min algorithms generate correct answers, but

children spontaneously transition between them. This suggests a general ability to refine

algorithms according to criteria such as efficiency or robustness to error, and possibly even

to reason about their behavior (e.g. determining patterns of output without running the

procedure).

Our work is still in its formative stages, but we have started to look at how children

infer simple procedures from examples and how they modify these procedures to make them

better (e.g. more robust to noise, more efficient). In pilot work, children observed a uniform

6 × 6 grid of Othello chips (i.e. black on one side, white on the other; Figure 7-1a). After

familiarization with the chips, children and an experimenter played a series of games in

which children observed a partial demonstration of a deliberately inefficient procedure for

constructing a pattern. Each partial demonstration processed two of the six rows in the

grid (e.g. Figure 7-1b). Children observed demonstrations for each of: count and flip every

second chip, count and flip every third chip, and count and flip every seventh chip. Critically,

each algorithm generated a simple visual pattern that could be more quickly constructed by

counting out just the first row and then directly flipping chips in the appropriate rows or

diagonals (Figures 7-1c–e). Children then both predicted the appearance of the complete

pattern and constructed the complete pattern in the experimenter’s absence, being asked

simply to “keep going” with the pattern.

Pilot results suggest that children can synthesize, analyze, and revise procedures for an

200

arbitrary domain of visual reasoning over patterns of Othello chips2. By age 6 or 7, they

can revise these algorithms quickly, even from a short observation of an inefficient algorithm

running. However, their skill depends on the complexity of the algorithm (e.g. every-other

vs. every-seventh). We intend to more deeply investigate children’s sensitivity to a broader

range of semantic features of algorithms and the learning mechanisms they bring to bear

during these kinds of tasks. In addition to their empirical value, these results can inform the

creation of increasingly accurate and hacker-like models of learning.

7.7 Final thoughts

This thesis develops a metaphor in which hacking plays a critical role in explaining the

representations, objectives, and mechanisms underlying human learning and cognitive de-

velopment. It has translated core aspects of this metaphor into a computational theory of

learning. This model attempts to go beyond standard approaches tying learning performance

to description length in a mental lexicon and captures richer aspects of human cognition. It

has also introduced a new domain for investigating inductive learning that captures more

of the richness of humans’ algorithmic abilities in a formally tractable way. These have

been jointly assessed in a large scale investigation of human and machine learning. The

results show that humans are deeply sensitive to structural cues of semantic content and

that a model which takes a hacker-like approach to learning—iteratively exploring revisions

to a programming language in ways that sometimes require entertaining hypotheses with

known deficiencies—is better able to account for human performance than alternative mod-

els. These results support the conclusion that the child as hacker hypothesis can productively

contribute to our understanding of learning. They also set the stage for a new generation of

models framing learning as hacking in an effort to provide a computationally precise account

of the richness and power of human learning.

2While developed independently, this domain is a simplified version of the ARC domain (Chollet, 2019)
that uses a smaller number of elements. It also, like ARC, shares deep connections with list functions, since
the grid can be modeled as a list of lists of 0s and 1s.

201

202

Appendix A

List Functions

The following table describes all 250 list functions used in Chapter 5, sorted according to

mean human performance (𝜇). Also listed are the description length (ℒ) of the program in

the model LOT described in Table 5.2, the function’s ID, a natural language description, the

model LOT program, and the first five examples shown to participants. Some functions may

appear twice if tested both with the numbers 0–99 and just with 0–9. The model comparison

of Chapter 6 considered concepts c001–c100.

𝜇 ℒ ID Description, Program, & Examples

0.903 2 c102 the input

(𝜆 x x)

[4, 72, 68, 63, 97] → [4, 72, 68, 63, 97]
[79, 50, 92, 5, 8, 91, 27, 2, 43]→ [79, 50, 92, 5, 8, 91, 27, 2, 43]
[26, 86, 51] → [26, 86, 51]
[0, 75, 58, 55] → [0, 75, 58, 55]
[36, 57, 94, 1, 87, 38] → [36, 57, 94, 1, 87, 38]

0.874 12 c170 remove all but element 1 and last element

(𝜆 x (cons (first x) (singleton (last x))))

[15, 4, 87, 8, 64, 14] → [15, 14]
[90, 35, 8, 1, 5, 6, 21, 70, 48, 51]→ [90, 51]
[57, 74, 80, 40, 60, 25, 0, 52] → [57, 52]
[44, 3, 19, 58, 50, 38, 29, 39, 2] → [44, 2]
[56, 72, 9, 32, 7, 11, 30] → [56, 30]

0.873 6 c121 remove all but last element

(𝜆 x (singleton (last x)))

[90, 80, 31, 14, 50] → [50]
[11, 79, 83] → [83]
[17, 59, 64, 22] → [22]
[65, 43, 10, 73, 3, 51, 56, 8, 0, 2]→ [2]
[26, 24, 7, 85, 54, 52] → [52]

203

𝜇 ℒ ID Description, Program, & Examples

0.868 2 c045 the input

(𝜆 x x)

[1, 1, 2, 0] → [1, 1, 2, 0]
[0] → [0]
[8, 8] → [8, 8]
[] → []
[5, 7, 9, 1, 3, 6, 4, 8, 2]→ [5, 7, 9, 1, 3, 6, 4, 8, 2]

0.855 15 c072 repeat every element 2 times in order of appearance

(𝜆 x (flatten (map (𝜆 y (cons y (singleton y))) x)))

[1, 3, 3, 7] → [1, 1, 3, 3, 3, 3, 7, 7]
[6, 9, 2, 8, 0, 5] → [6, 6, 9, 9, 2, 2, 8, 8, 0, 0, 5, 5]
[9] → [9, 9]
[4, 4, 4] → [4, 4, 4, 4, 4, 4]
[5, 6, 4, 8, 9, 7, 3]→ [5, 5, 6, 6, 4, 4, 8, 8, 9, 9, 7, 7, 3, 3]

0.853 13 c151 repeat each element, M, M times, in order of appearance

(𝜆 x (flatten (map (𝜆 y (repeat y y)) x)))

[2, 1, 3, 5, 0]→ [2, 2, 1, 3, 3, 3, 5, 5, 5, 5, 5]
[3, 4, 2, 0] → [3, 3, 3, 4, 4, 4, 4, 2, 2]
[3] → [3, 3, 3]
[0, 1, 1] → [1, 1]
[1, 0] → [1]

0.841 4 c080 elements in reverse order

(𝜆 x (reverse x))

[0, 5, 5, 5] → [5, 5, 5, 0]
[6, 7, 9, 1, 4, 8, 2, 0, 2, 3]→ [3, 2, 0, 2, 8, 4, 1, 9, 7, 6]
[6, 3, 1] → [1, 3, 6]
[0, 7] → [7, 0]
[9, 5, 3, 0, 7, 4, 7, 1, 6] → [6, 1, 7, 4, 7, 0, 3, 5, 9]

0.836 6 c061 remove all but the last element

(𝜆 x (singleton (last x)))

[9, 3, 2, 4] → [4]
[1, 7, 5, 6, 9, 8]→ [8]
[4, 3] → [3]
[2, 0, 1] → [1]
[6, 6] → [6]

0.833 12 c189 count from the smallest element to the largest element

(𝜆 x (range (min x) 1 (max x)))

[2, 7, 6, 8, 4] → [2, 3, 4, 5, 6, 7, 8]
[69, 65, 65, 65] → [65, 66, 67, 68, 69]
[98, 98, 98, 98] → [98]
[10, 5, 10, 9, 4, 6, 4] → [4, 5, 6, 7, 8, 9, 10]
[0, 0, 4, 3, 1, 5, 0, 1]→ [0, 1, 2, 3, 4, 5]

0.823 8 c050 prepend element 1

(𝜆 x (cons (first x) x))

[2, 4, 9, 3] → [2, 2, 4, 9, 3]
[0, 4, 8, 4, 0] → [0, 0, 4, 8, 4, 0]
[6, 6, 9, 7, 5, 9]→ [6, 6, 6, 9, 7, 5, 9]
[3, 7] → [3, 3, 7]
[5] → [5, 5]

204

𝜇 ℒ ID Description, Program, & Examples

0.818 6 c048 remove all but element 1

(𝜆 x (take 1 x))

[6, 4, 7, 9] → [6]
[4, 8, 6] → [4]
[3, 3, 3] → [3]
[2, 2] → [2]
[1, 9, 9, 5, 5]→ [1]

0.811 16 c147 each element, followed by its original index

(𝜆 x (flatten (mapi (𝜆 y (𝜆 z (cons z (singleton y)))) x)))

[88, 93, 73, 54, 79] → [88, 1, 93, 2, 73, 3, 54, 4, 79, 5]
[11, 0, 85, 98] → [11, 1, 0, 2, 85, 3, 98, 4]
[62, 53, 21] → [62, 1, 53, 2, 21, 3]
[90, 33] → [90, 1, 33, 2]
[68, 49, 92, 75, 8, 17, 40]→ [68, 1, 49, 2, 92, 3, 75, 4, 8, 5, 17, 6, 40, 7]

0.806 6 c120 remove all but first element

(𝜆 x (singleton (first x)))

[74, 1, 93, 44, 5] → [74]
[52, 27, 13, 3, 0, 60, 51, 80, 21]→ [52]
[19, 54] → [19]
[46, 7, 84, 59, 89, 6, 2] → [46]
[62, 4, 98, 65, 42, 22] → [62]

0.793 6 c127 remove last element

(𝜆 x (droplast 1 x))

[74, 12, 59, 87, 7] → [74, 12, 59, 87]
[9, 28, 91] → [9, 28]
[30, 36, 65, 95, 2, 4, 23, 93, 6, 73]→ [30, 36, 65, 95, 2, 4, 23, 93, 6]
[45, 71, 78, 34, 3, 89, 67, 10, 96] → [45, 71, 78, 34, 3, 89, 67, 10]
[90, 83, 81, 1, 58, 88] → [90, 83, 81, 1, 58]

0.792 4 c100 reversed input

(𝜆 x (reverse x))

[31, 0, 51, 90] → [90, 51, 0, 31]
[6, 1, 9, 13, 70, 66, 8, 40, 7]→ [7, 40, 8, 66, 70, 13, 9, 1, 6]
[5, 2] → [2, 5]
[64, 64, 97] → [97, 64, 64]
[75, 4, 7, 5, 33] → [33, 5, 7, 4, 75]

0.779 9 c145 replace every element with element 1

(𝜆 x (map (𝜆 y (first x)) x))

[45, 30, 33, 4, 64] → [45, 45, 45, 45, 45]
[70, 43, 11, 75] → [70, 70, 70, 70]
[51, 46, 52, 74, 5, 72, 9] → [51, 51, 51, 51, 51, 51, 51]
[55, 22, 7, 94, 24, 60, 79, 97, 67]→ [55, 55, 55, 55, 55, 55, 55, 55, 55]
[54, 2, 10, 8, 6, 95] → [54, 54, 54, 54, 54, 54]

0.778 6 c079 sum of elements

(𝜆 x (singleton (sum x)))

[0, 4, 1, 3]→ [8]
[5, 0] → [5]
[1, 1, 7] → [9]
[3, 3] → [6]
[] → [0]

205

𝜇 ℒ ID Description, Program, & Examples

0.777 20 c043 the list [8, 2, 7, 0, 3]

(𝜆 x (cons 8 (cons 2 (cons 7 (cons 0 (singleton 3))))))

[2, 2, 2, 2] → [8, 2, 7, 0, 3]
[5, 5, 5, 5, 5] → [8, 2, 7, 0, 3]
[9, 3, 7, 8, 2, 1, 9, 0] → [8, 2, 7, 0, 3]
[5, 0, 6, 4, 5, 5, 9, 6, 4, 1]→ [8, 2, 7, 0, 3]
[4, 1, 6, 4, 6, 1, 6, 3, 4] → [8, 2, 7, 0, 3]

0.773 6 c038 append 9

(𝜆 x (append x 9))

[4, 2, 2, 2] → [4, 2, 2, 2, 9]
[1, 0] → [1, 0, 9]
[6] → [6, 9]
[7, 9, 5] → [7, 9, 5, 9]
[8, 6, 4, 5, 1, 9, 8, 3]→ [8, 6, 4, 5, 1, 9, 8, 3, 9]

0.77 8 c042 the list [5, 2]

(𝜆 x (cons 5 (singleton 2)))

[9, 3, 8, 0] → [5, 2]
[1, 1, 0, 7, 7]→ [5, 2]
[6, 7, 3] → [5, 2]
[9, 8] → [5, 2]
[4, 4] → [5, 2]

0.766 23 c223 swap the digits of each element

(𝜆 x (map (𝜆 y (+ (* (% y 10) 10) (/ y 10))) x))

[4, 69, 95, 9, 49] → [40, 96, 59, 90, 94]
[68, 99, 24] → [86, 99, 42]
[54, 62, 9, 7, 32, 57, 45, 92, 47]→ [45, 26, 90, 70, 23, 75, 54, 29, 74]
[15, 17, 25, 19] → [51, 71, 52, 91]
[18, 3, 6, 11, 58, 48] → [81, 30, 60, 11, 85, 84]

0.764 6 c137 remove all occurrences of 3

(𝜆 x (cut_vals 3 x))

[8, 3, 1, 3, 3] → [8, 1]
[73, 19, 51, 99, 67, 5, 47, 4, 3] → [73, 19, 51, 99, 67, 5, 47, 4]
[5, 3, 34, 63, 38, 3] → [5, 34, 63, 38]
[44, 66, 3, 46, 2, 6, 88, 75] → [44, 66, 46, 2, 6, 88, 75]
[68, 76, 1, 3, 8, 12, 42, 0, 6, 18]→ [68, 76, 1, 8, 12, 42, 0, 6, 18]

0.76 17 c238 keep only elements that appear exactly once

(𝜆 x (filter (𝜆 y (== 1 (count (== y) x))) x))

[8, 0, 5, 12, 0, 2] → [8, 5, 12, 2]
[8, 19, 7, 8, 8, 8, 7, 7, 7, 7]→ [19]
[0, 1, 18, 9, 9, 0, 15, 6, 1] → [18, 15, 6]
[0, 17, 4, 8, 4, 10, 1] → [0, 17, 8, 10, 1]
[5, 3, 1, 6, 6, 3, 4, 4] → [5, 1]

0.758 6 c108 sum of elements

(𝜆 x (singleton (sum x)))

[9, 6, 15, 3, 43] → [76]
[] → [0]
[12, 15, 7, 10, 8, 29]→ [81]
[39, 23, 34] → [96]
[24, 46] → [70]

206

𝜇 ℒ ID Description, Program, & Examples

0.758 6 c126 remove element 1

(𝜆 x (drop 1 x))

[39, 52, 17, 56, 10] → [52, 17, 56, 10]
[42, 5, 82, 8, 16, 19, 99, 3] → [5, 82, 8, 16, 19, 99, 3]
[80, 0, 88, 30, 7, 15, 55] → [0, 88, 30, 7, 15, 55]
[36, 73, 54] → [73, 54]
[4, 24, 81, 64, 14, 70, 13, 32, 2, 9]→ [24, 81, 64, 14, 70, 13, 32, 2, 9]

0.756 10 c187 concatenate input with itself, separated by 0

(𝜆 x (concat x (cons 0 x)))

[83, 90, 11, 35, 5]→ [83, 90, 11, 35, 5, 0, 83, 90, 11, 35, 5]
[53, 73] → [53, 73, 0, 53, 73]
[77, 7, 22] → [77, 7, 22, 0, 77, 7, 22]
[89, 50, 2, 95] → [89, 50, 2, 95, 0, 89, 50, 2, 95]
[16] → [16, 0, 16]

0.752 8 c022 insert a 5 as element 2

(𝜆 x (insert 5 2 x))

[6, 5, 3, 3] → [6, 5, 5, 3, 3]
[8, 4, 4, 4, 8, 4]→ [8, 5, 4, 4, 4, 8, 4]
[1, 1] → [1, 5, 1]
[0, 2, 6] → [0, 5, 2, 6]
[1, 9, 0, 9, 1] → [1, 5, 9, 0, 9, 1]

0.75 18 c212 insert 3 at index 3, 3 times

(𝜆 x (splice (cons 3 (cons 3 (singleton 3))) 3 x))

[5, 9, 7, 80, 82] → [5, 9, 3, 3, 3, 7, 80, 82]
[6, 54, 74, 26, 8, 95] → [6, 54, 3, 3, 3, 74, 26, 8, 95]
[59, 96, 98, 25, 87, 86, 4]→ [59, 96, 3, 3, 3, 98, 25, 87, 86, 4]
[72, 15, 39] → [72, 15, 3, 3, 3, 39]
[2, 65, 53, 68] → [2, 65, 3, 3, 3, 53, 68]

0.748 42 c101 the list [11,19, 24, 33, 42, 5, 82, 0, 64, 9]

(𝜆 x (cons 11 (cons 19 (cons 24 (cons 33 (cons 42 (cons 5 (cons 82 (cons 0 (cons 64 (cons 9
empty)))))))))))
[2, 67, 32, 46, 12] → [11, 19, 24, 33, 42, 5, 82, 0, 64, 9]
[77, 51, 8, 27, 39, 7, 4, 92, 2, 71]→ [11, 19, 24, 33, 42, 5, 82, 0, 64, 9]
[36, 86, 78, 66, 6, 1, 70, 72] → [11, 19, 24, 33, 42, 5, 82, 0, 64, 9]
[37, 47, 3, 74, 20, 20, 3] → [11, 19, 24, 33, 42, 5, 82, 0, 64, 9]
[31, 80, 97, 98, 85, 60] → [11, 19, 24, 33, 42, 5, 82, 0, 64, 9]

0.744 8 c021 insert an 8 as element 2

(𝜆 x (insert 8 2 x))

[1, 6, 9, 3] → [1, 8, 6, 9, 3]
[7, 4] → [7, 8, 4]
[0, 2, 3] → [0, 8, 2, 3]
[7, 9, 1, 2, 6, 3, 0, 4, 7, 5]→ [7, 8, 9, 1, 2, 6, 3, 0, 4, 7, 5]
[0, 8, 6, 4, 0] → [0, 8, 8, 6, 4, 0]

0.744 16 c105 concatenate all but the last element with all but the first element

(𝜆 x (splice (drop 1 (droplast 1 x)) 2 x))

[31, 40, 16, 44, 73] → [31, 40, 16, 44, 40, 16, 44, 73]
[5, 1, 10, 24] → [5, 1, 10, 1, 10, 24]
[26, 25, 85, 7, 94, 46]→ [26, 25, 85, 7, 94, 25, 85, 7, 94, 46]
[45, 62, 96, 4, 79, 57]→ [45, 62, 96, 4, 79, 62, 96, 4, 79, 57]
[6, 35, 75] → [6, 35, 35, 75]

207

𝜇 ℒ ID Description, Program, & Examples

0.74 4 c041 the list [9]

(𝜆 x (singleton 9))

[7, 3, 6, 4] → [9]
[8, 7, 5, 5, 1, 6]→ [9]
[] → [9]
[2, 2] → [9]
[0] → [9]

0.738 6 c070 concatenate input with itself

(𝜆 x (concat x x))

[3, 2, 0, 9] → [3, 2, 0, 9, 3, 2, 0, 9]
[7, 1, 1, 2, 1, 2] → [7, 1, 1, 2, 1, 2, 7, 1, 1, 2, 1, 2]
[7] → [7, 7]
[0, 8, 4, 3, 6, 8, 4]→ [0, 8, 4, 3, 6, 8, 4, 0, 8, 4, 3, 6, 8, 4]
[5, 5] → [5, 5, 5, 5]

0.736 8 c052 repeat element 1 ten times

(𝜆 x (repeat (first x) 10))

[9, 8, 7, 1] → [9, 9, 9, 9, 9, 9, 9, 9, 9, 9]
[2, 5, 5] → [2, 2, 2, 2, 2, 2, 2, 2, 2, 2]
[4, 0, 6, 7, 3, 5, 1, 6, 3]→ [4, 4, 4, 4, 4, 4, 4, 4, 4, 4]
[6, 7, 1] → [6, 6, 6, 6, 6, 6, 6, 6, 6, 6]
[0] → [0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

0.723 40 c044 the list [1, 9, 4, 3, 2, 5, 8, 0, 4, 9]

(𝜆 x (cons 1 (cons 9 (cons 4 (cons 3 (cons 2 (cons 5 (cons 8 (cons 0 (cons 4 (singleton
9)))))))))))
[2, 7, 7, 3] → [1, 9, 4, 3, 2, 5, 8, 0, 4, 9]
[6, 6, 6] → [1, 9, 4, 3, 2, 5, 8, 0, 4, 9]
[0, 0, 1, 6, 1, 6, 1]→ [1, 9, 4, 3, 2, 5, 8, 0, 4, 9]
[] → [1, 9, 4, 3, 2, 5, 8, 0, 4, 9]
[7] → [1, 9, 4, 3, 2, 5, 8, 0, 4, 9]

0.717 12 c190 count by 2 from the first element to the last element

(𝜆 x (range (first x) 2 (last x)))

[46, 19, 96, 58, 58] → [46, 48, 50, 52, 54, 56, 58]
[2, 8, 1, 14, 7, 4, 61, 0, 6] → [2, 4, 6]
[66, 3, 6, 46, 82, 88, 17, 1, 93, 76]→ [66, 68, 70, 72, 74, 76]
[8, 92, 0, 2, 94, 41, 14] → [8, 10, 12, 14]
[24, 4, 32] → [24, 26, 28, 30, 32]

0.717 6 c037 append 3

(𝜆 x (append x 3))

[2, 0, 6, 0] → [2, 0, 6, 0, 3]
[9, 9] → [9, 9, 3]
[3, 1, 7] → [3, 1, 7, 3]
[4, 4, 5, 5, 4, 4, 5, 4]→ [4, 4, 5, 5, 4, 4, 5, 4, 3]
[2, 6, 9, 6, 7, 1] → [2, 6, 9, 6, 7, 1, 3]

0.716 9 c222 replace each element with the input length

(𝜆 x (map (𝜆 y (length x)) x))

[34, 83, 11, 82, 31]→ [5, 5, 5, 5, 5]
[74, 59, 14, 50] → [4, 4, 4, 4]
[25] → [1]
[58, 80] → [2, 2]
[22, 92, 28] → [3, 3, 3]

208

𝜇 ℒ ID Description, Program, & Examples

0.714 4 c107 unique elements

(𝜆 x (unique x))

[87, 87, 17, 17, 17, 87] → [87, 17]
[3, 92, 18, 6, 49, 49, 1, 38, 80] → [3, 92, 18, 6, 49, 1, 38, 80]
[68, 68, 68, 68, 68, 68, 68, 68, 68, 68]→ [68]
[89, 89, 89, 36, 55, 14, 7, 14] → [89, 36, 55, 14, 7]
[81, 69, 85, 81, 69, 74, 0, 24, 74, 61] → [81, 69, 85, 74, 0, 24, 61]

0.713 8 c011 elements 2 through 4

(𝜆 x (slice 2 4 x))

[6, 1, 3, 0, 4, 9] → [1, 3, 0]
[7, 2, 4, 2, 4, 7, 2, 2, 4]→ [2, 4, 2]
[6, 8, 6, 9, 9, 8, 8, 6] → [8, 6, 9]
[1, 1, 4, 0, 3, 1, 3, 5, 0]→ [1, 4, 0]
[5, 8, 5, 8, 3, 8, 7, 3, 7]→ [8, 5, 8]

0.712 6 c104 maximum element

(𝜆 x (singleton (max x)))

[5, 26, 31, 76, 89] → [89]
[9, 42, 54, 18, 83, 7, 34] → [83]
[4, 24, 58, 93, 28, 60, 2, 0, 22, 8]→ [93]
[48, 47] → [48]
[63, 46, 6] → [63]

0.706 11 c192 replace each element, M, with its tens digit

(𝜆 x (map (𝜆 y (/ y 10)) x))

[31, 14, 3, 18, 32]→ [3, 1, 0, 1, 3]
[61, 40, 77, 2] → [6, 4, 7, 0]
[92, 47, 62] → [9, 4, 6]
[13] → [1]
[45, 58] → [4, 5]

0.706 16 c182 keep every third element

(𝜆 x (filteri (𝜆 y (𝜆 z (== (% y 3) 0))) x))

[64, 6, 85, 21, 47, 46, 60, 4, 7] → [85, 46, 7]
[56, 12, 39, 29, 71, 2, 1, 55, 9, 93] → [39, 2, 9]
[20, 92, 79, 36, 7, 34, 26, 25, 1] → [79, 34, 1]
[41, 67, 38, 84, 14, 80, 99, 91, 23, 8]→ [38, 80, 23]
[42, 77, 3, 57, 5, 0, 79, 13, 83, 4] → [3, 0, 83]

0.701 6 c006 the first 2 elements

(𝜆 x (take 2 x))

[7, 8, 5, 7] → [7, 8]
[3, 1, 1, 1, 3, 1, 1]→ [3, 1]
[8, 0, 8, 7, 4, 0, 4]→ [8, 0]
[2, 0, 4, 6, 5] → [2, 0]
[9, 9, 9] → [9, 9]

0.701 6 c046 prepend 7

(𝜆 x (cons 7 x))

[8, 8, 5, 5] → [7, 8, 8, 5, 5]
[] → [7]
[9] → [7, 9]
[1, 4] → [7, 1, 4]
[3, 8, 6, 7, 0, 3, 4]→ [7, 3, 8, 6, 7, 0, 3, 4]

209

𝜇 ℒ ID Description, Program, & Examples

0.7 7 c106 elements in ascending order

(𝜆 x (sort (𝜆 y y) x))

[36, 86, 2, 97, 10] → [2, 10, 36, 86, 97]
[50, 94, 0, 83, 77, 71, 5, 3, 57, 8]→ [0, 3, 5, 8, 50, 57, 71, 77, 83, 94]
[85, 26, 7, 23, 48, 39] → [7, 23, 26, 39, 48, 85]
[89, 4, 21, 35, 78, 96, 11, 90, 47] → [4, 11, 21, 35, 47, 78, 89, 90, 96]
[68, 1, 44, 93] → [1, 44, 68, 93]

0.699 8 c114 prepend the last element

(𝜆 x (cons (last x) x))

[86, 84, 60, 20, 21] → [21, 86, 84, 60, 20, 21]
[10, 4, 51, 57] → [57, 10, 4, 51, 57]
[67, 72] → [72, 67, 72]
[35, 49, 2, 45, 46, 92, 9, 6, 58]→ [58, 35, 49, 2, 45, 46, 92, 9, 6, 58]
[55, 5, 56] → [56, 55, 5, 56]

0.694 8 c093 repeat element 1 ten times

(𝜆 x (repeat (first x) 10))

[94, 36, 57, 91] → [94, 94, 94, 94, 94, 94, 94, 94, 94, 94]
[93, 7, 37, 90, 0, 99, 6, 6] → [93, 93, 93, 93, 93, 93, 93, 93, 93, 93]
[62] → [62, 62, 62, 62, 62, 62, 62, 62, 62, 62]
[19, 5, 2, 76, 61, 5, 43, 1, 20] → [19, 19, 19, 19, 19, 19, 19, 19, 19, 19]
[4, 63, 0, 58, 61, 9, 0, 1, 85, 8]→ [4, 4, 4, 4, 4, 4, 4, 4, 4, 4]

0.693 32 c195 element 1, followed by 23, 68, 42, 99, 71, followed by last element

(𝜆 x (cons (first x) (cons 23 (cons 68 (cons 42 (cons 99 (cons 71 (singleton (last x)))))))))

[1, 72, 24, 78, 31] → [1, 23, 68, 42, 99, 71, 31]
[6, 61, 57, 53, 51, 95, 26] → [6, 23, 68, 42, 99, 71, 26]
[79, 7, 54, 1, 38, 84] → [79, 23, 68, 42, 99, 71, 84]
[64, 41, 89, 75, 63, 40, 2, 43, 21, 9]→ [64, 23, 68, 42, 99, 71, 9]
[56, 55, 17, 46, 94, 50, 29, 5, 0] → [56, 23, 68, 42, 99, 71, 0]

0.693 30 c196 concatenate [17, 38, 82], input, and [1, 55, 27]

(𝜆 x (concat (cons 17 (cons 38 (singleton 82))) (concat x (cons 1 (cons 55 (singleton 27))))))

[90, 0, 19, 94, 8]→ [17, 38, 82, 90, 0, 19, 94, 8, 1, 55, 27]
[24, 49, 53] → [17, 38, 82, 24, 49, 53, 1, 55, 27]
[86, 77] → [17, 38, 82, 86, 77, 1, 55, 27]
[51, 52, 91, 9] → [17, 38, 82, 51, 52, 91, 9, 1, 55, 27]
[15] → [17, 38, 82, 15, 1, 55, 27]

0.692 10 c095 remove the first and last elements

(𝜆 x (drop 1 (droplast 1 x)))

[8, 97, 65, 9, 54, 97] → [97, 65, 9, 54]
[16, 51, 51, 16, 16, 0, 0, 85, 51, 9]→ [51, 51, 16, 16, 0, 0, 85, 51]
[6, 21, 6, 59, 6, 59, 6, 12, 12] → [21, 6, 59, 6, 59, 6, 12]
[56, 39, 5, 5, 2, 24, 24] → [39, 5, 5, 2, 24]
[46, 46, 46, 46, 32, 32, 32, 46] → [46, 46, 46, 32, 32, 32]

0.689 8 c016 replace element 2 with an 8

(𝜆 x (replace 2 8 x))

[1, 1, 0, 2] → [1, 8, 0, 2]
[6, 1, 2, 4, 3, 5, 3, 9, 0, 7]→ [6, 8, 2, 4, 3, 5, 3, 9, 0, 7]
[5, 5, 5] → [5, 8, 5]
[8, 1, 9, 6, 0, 7, 5] → [8, 8, 9, 6, 0, 7, 5]
[9, 2] → [9, 8]

210

𝜇 ℒ ID Description, Program, & Examples

0.687 16 c224 the last element, followed by element 1, followed by the second to last element, followed by element 2,
and so on
(𝜆 x (fold (𝜆 y (𝜆 z (cons z (reverse y)))) empty x))

[80, 31, 6, 69, 38] → [38, 6, 80, 31, 69]
[29, 17, 49, 99, 41, 93, 0, 2, 5, 3]→ [3, 2, 93, 99, 17, 29, 49, 41, 0, 5]
[68, 4, 34, 17, 24, 85, 82, 7, 52] → [52, 82, 24, 34, 68, 4, 17, 85, 7]
[87, 73, 92, 8] → [8, 73, 87, 92]
[10, 65, 16, 45, 97, 22, 30] → [30, 97, 16, 10, 65, 45, 22]

0.682 12 c116 reflect the input on itself

(𝜆 x (concat (reverse (drop 1 x)) x))

[52, 72, 4, 18, 70] → [70, 18, 4, 72, 52, 72, 4, 18, 70]
[48, 47, 27] → [27, 47, 48, 47, 27]
[67, 23, 25, 54] → [54, 25, 23, 67, 23, 25, 54]
[31, 2, 68, 11, 5, 65, 81, 28]→ [28, 81, 65, 5, 11, 68, 2, 31, 2, 68, 11, 5, 65, 81, 28]
[64, 66] → [66, 64, 66]

0.682 8 c140 replace element 2 with a 9

(𝜆 x (replace 2 9 x))

[75, 78, 54, 76, 56] → [75, 9, 54, 76, 56]
[35, 24, 0, 8, 51, 42, 60, 20, 4] → [35, 9, 0, 8, 51, 42, 60, 20, 4]
[16, 31, 77, 74, 38, 23] → [16, 9, 77, 74, 38, 23]
[7, 2, 0, 6, 67, 64, 5, 30, 95, 70]→ [7, 9, 0, 6, 67, 64, 5, 30, 95, 70]
[25, 48, 96, 89] → [25, 9, 96, 89]

0.679 6 c049 remove element 1

(𝜆 x (drop 1 x))

[3, 3, 3, 3] → [3, 3, 3]
[7, 1, 4, 1, 0, 8] → [1, 4, 1, 0, 8]
[1, 0, 9, 0, 2] → [0, 9, 0, 2]
[4, 9, 7, 6, 6, 4, 5]→ [9, 7, 6, 6, 4, 5]
[2] → []

0.678 11 c071 add 2 to every element

(𝜆 x (map (𝜆 y (+ 2 y)) x))

[0, 0, 7, 0] → [2, 2, 9, 2]
[6, 7, 7, 6, 1, 4, 2, 6, 5]→ [8, 9, 9, 8, 3, 6, 4, 8, 7]
[6] → [8]
[5, 5] → [7, 7]
[1, 4, 3, 6, 0] → [3, 6, 5, 8, 2]

0.678 22 c161 replace each element, M, with M + the input length - M’s index

(𝜆 x (mapi (𝜆 y (𝜆 z (+ z (- (length x) y)))) x))

[75, 25, 38, 55, 91, 26] → [80, 29, 41, 57, 92, 26]
[5, 30, 2, 9, 3, 19, 92, 15] → [12, 36, 7, 13, 6, 21, 93, 15]
[38, 10, 66, 49, 50, 8, 61, 59, 64]→ [46, 17, 72, 54, 54, 11, 63, 60, 64]
[11, 19, 0, 31, 40, 16, 78] → [17, 24, 4, 34, 42, 17, 78]
[89, 4, 7, 8, 82, 3, 9, 45, 38, 94] → [98, 12, 14, 14, 87, 7, 12, 47, 39, 94]

0.675 24 c068 concatenate input and [7, 3, 8, 4, 3]

(𝜆 x (concat x (cons 7 (cons 3 (cons 8 (cons 4 (singleton 3)))))))

[8, 0, 8, 0] → [8, 0, 8, 0, 7, 3, 8, 4, 3]
[5, 5, 4, 7, 4, 7, 5, 4]→ [5, 5, 4, 7, 4, 7, 5, 4, 7, 3, 8, 4, 3]
[0] → [0, 7, 3, 8, 4, 3]
[] → [7, 3, 8, 4, 3]
[6, 2, 1, 6, 2, 1] → [6, 2, 1, 6, 2, 1, 7, 3, 8, 4, 3]

211

𝜇 ℒ ID Description, Program, & Examples

0.675 6 c103 input length

(𝜆 x (singleton (length x)))

[38, 51, 18, 72, 13] → [5]
[] → [0]
[83] → [1]
[73, 91, 96, 60, 61, 42, 2, 6, 33]→ [9]
[90, 93, 81, 3, 57, 69, 21] → [7]

0.673 6 c001 remove all but element 3

(𝜆 x (singleton (third x)))

[2, 4, 3, 2] → [3]
[9, 6, 9, 8, 6]→ [9]
[0, 0, 0, 0, 0]→ [0]
[8, 1, 8] → [8]
[5, 7, 5, 7, 5]→ [5]

0.67 20 c090 the list [18, 42, 77, 20, 36]

(𝜆 x (cons 18 (cons 42 (cons 77 (cons 20 (singleton 36))))))

[79, 85, 85, 85] → [18, 42, 77, 20, 36]
[33, 33] → [18, 42, 77, 20, 36]
[92, 2, 2, 7, 9, 84, 52, 5, 6, 41] → [18, 42, 77, 20, 36]
[2, 34, 96, 49, 83, 41, 35, 4, 39, 97]→ [18, 42, 77, 20, 36]
[89, 68, 4, 3, 68, 76, 80, 6] → [18, 42, 77, 20, 36]

0.667 38 c097 concatenate [11, 21, 43, 19], input, and [7, 89, 0, 57]

(𝜆 x (concat (cons 11 (cons 21 (cons 43 (singleton 19)))) (concat x (cons 7 (cons 89 (cons 0
(singleton 57)))))))
[6, 59, 33, 33] → [11, 21, 43, 19, 6, 59, 33, 33, 7, 89, 0, 57]
[2, 87, 9, 99, 62, 4]→ [11, 21, 43, 19, 2, 87, 9, 99, 62, 4, 7, 89, 0, 57]
[39, 87] → [11, 21, 43, 19, 39, 87, 7, 89, 0, 57]
[91] → [11, 21, 43, 19, 91, 7, 89, 0, 57]
[] → [11, 21, 43, 19, 7, 89, 0, 57]

0.665 23 c142 every digit in order of appearance

(𝜆 x (flatten (map (𝜆 y (cons (/ y 10) (singleton (% y 10)))) x)))

[77, 63, 83, 97, 58] → [7, 7, 6, 3, 8, 3, 9, 7, 5, 8]
[47, 54] → [4, 7, 5, 4]
[95, 60, 15, 52] → [9, 5, 6, 0, 1, 5, 5, 2]
[33] → [3, 3]
[70, 2, 92, 13, 22, 19]→ [7, 0, 0, 2, 9, 2, 1, 3, 2, 2, 1, 9]

0.661 40 c091 the list [81, 99, 41, 23, 22, 75, 68, 30, 24, 69]

(𝜆 x (cons 81 (cons 99 (cons 41 (cons 23 (cons 22 (cons 75 (cons 68 (cons 30 (cons 24 (singleton
69)))))))))))
[3, 88, 88] → [81, 99, 41, 23, 22, 75, 68, 30, 24, 69]
[] → [81, 99, 41, 23, 22, 75, 68, 30, 24, 69]
[6] → [81, 99, 41, 23, 22, 75, 68, 30, 24, 69]
[61, 1, 59, 4, 5, 35, 48, 27, 9]→ [81, 99, 41, 23, 22, 75, 68, 30, 24, 69]
[72, 58, 56, 49, 40, 7, 25, 1] → [81, 99, 41, 23, 22, 75, 68, 30, 24, 69]

0.659 8 c034 swap elements 2 and 3

(𝜆 x (swap 2 3 x))

[1, 9, 1, 4] → [1, 1, 9, 4]
[7, 1, 8, 6, 3, 5, 9, 4] → [7, 8, 1, 6, 3, 5, 9, 4]
[6, 1, 2, 7, 4] → [6, 2, 1, 7, 4]
[9, 0, 2] → [9, 2, 0]
[3, 1, 4, 2, 6, 5, 9, 7, 0, 8]→ [3, 4, 1, 2, 6, 5, 9, 7, 0, 8]

212

𝜇 ℒ ID Description, Program, & Examples

0.657 13 c244 number of 3s

(𝜆 x (singleton (count (𝜆 y (== 3 y)) x)))

[52, 3, 3, 3, 3, 3, 52] → [5]
[3, 3, 3, 3, 3, 14, 14, 3, 14] → [6]
[28, 79, 1, 3, 55, 42, 70, 60, 7, 67]→ [1]
[92, 11, 94, 7, 2, 1, 18, 8, 89, 5] → [0]
[3, 43, 3, 3, 27, 3, 7, 69] → [4]

0.655 26 c171 cumulative sum of elements

(𝜆 x (drop 1 (fold (𝜆 y (𝜆 z (append y (+ (last y) z)))) (singleton 0) x)))

[2, 9, 17, 9, 17, 4] → [2, 11, 28, 37, 54, 58]
[7, 7, 8, 3, 4, 4, 5, 0] → [7, 14, 22, 25, 29, 33, 38, 38]
[5, 7, 2, 6, 1, 0, 9] → [5, 12, 14, 20, 21, 21, 30]
[5, 0, 4, 15, 5, 7, 6, 15, 2, 7]→ [5, 5, 9, 24, 29, 36, 42, 57, 59, 66]
[7, 7, 2, 7, 11, 0, 16, 16, 7] → [7, 14, 16, 23, 34, 34, 50, 66, 73]

0.651 26 c172 cumulative product of elements

(𝜆 x (drop 1 (fold (𝜆 y (𝜆 z (append y (* (last y) z)))) (singleton 1) x)))

[4, 2, 2, 2] → [4, 8, 16, 32]
[5, 2, 7] → [5, 10, 70]
[4, 1, 1, 4, 1, 4, 1]→ [4, 4, 4, 16, 16, 64, 64]
[7, 9] → [7, 63]
[2, 2, 2, 3, 3, 1] → [2, 4, 8, 24, 72, 72]

0.65 6 c062 remove the last element

(𝜆 x (droplast 1 x))

[2, 5, 2, 7] → [2, 5, 2]
[8] → []
[7, 6, 0, 7, 3] → [7, 6, 0, 7]
[9, 9] → [9]
[1, 3, 8, 5, 7, 6, 0, 9, 2, 4]→ [1, 3, 8, 5, 7, 6, 0, 9, 2]

0.647 10 c096 prepend 98 and append 37

(𝜆 x (cons 98 (append x 37)))

[20, 70, 38, 80] → [98, 20, 70, 38, 80, 37]
[3, 3] → [98, 3, 3, 37]
[] → [98, 37]
[8, 8, 1, 89, 85, 7, 49]→ [98, 8, 8, 1, 89, 85, 7, 49, 37]
[6] → [98, 6, 37]

0.644 6 c081 remove all but element 3

(𝜆 x (singleton (third x)))

[40, 50, 76, 47, 39] → [76]
[9, 81, 6, 81, 6] → [6]
[9, 91, 70, 48, 59, 83, 43] → [70]
[27, 4, 38, 83, 5, 3, 15, 4, 5, 83]→ [38]
[45, 45, 45] → [45]

0.641 6 c109 product of elements

(𝜆 x (singleton (product x)))

[5, 1, 1, 1, 3]→ [15]
[6, 6] → [36]
[] → [1]
[4, 3, 2, 3] → [72]
[7, 14, 1] → [98]

213

𝜇 ℒ ID Description, Program, & Examples

0.636 18 c002 remove all but element 3

(𝜆 x (if (> 3 (length x)) empty (singleton (third x))))

[0, 5] → []
[5, 6, 1, 3, 2, 0, 7, 8, 9, 4]→ [1]
[6, 7, 8, 1, 4, 3, 0, 5, 9, 2]→ [8]
[7, 4, 3, 9, 5, 8, 2, 1, 6] → [3]
[4, 6] → []

0.636 6 c132 remove element 3

(𝜆 x (cut_idx 3 x))

[8, 0, 3, 56, 95] → [8, 0, 56, 95]
[93, 5, 51, 24, 11, 7, 44] → [93, 5, 24, 11, 7, 44]
[27, 20, 19, 63, 13, 64] → [27, 20, 63, 13, 64]
[15, 57, 70, 35] → [15, 57, 35]
[1, 43, 23, 65, 4, 6, 28, 2, 10, 40]→ [1, 43, 65, 4, 6, 28, 2, 10, 40]

0.636 24 c153 each unique element followed by its number of occurrences, in order of appearance

(𝜆 x (flatten (map (𝜆 y (append (take 1 y) (length y))) (group (𝜆 z z) x))))

[23, 23, 23, 27, 27] → [23, 3, 27, 2]
[1, 95, 95, 41, 41, 1, 35, 95, 35] → [1, 2, 95, 3, 41, 2, 35, 2]
[39, 39] → [39, 2]
[0, 0, 97, 97, 25, 25] → [0, 2, 97, 2, 25, 2]
[78, 99, 50, 5, 90, 5, 78, 90, 50, 99]→ [78, 2, 99, 2, 50, 2, 5, 2, 90, 2]

0.63 12 c051 prepend element 1 five times

(𝜆 x (concat (repeat (first x) 5) x))

[9, 9, 9, 9] → [9, 9, 9, 9, 9, 9, 9, 9, 9]
[4, 1] → [4, 4, 4, 4, 4, 4, 1]
[5, 7, 0, 7, 3, 5, 8] → [5, 5, 5, 5, 5, 5, 7, 0, 7, 3, 5, 8]
[8] → [8, 8, 8, 8, 8, 8]
[2, 4, 5, 1, 3, 6, 8, 0]→ [2, 2, 2, 2, 2, 2, 4, 5, 1, 3, 6, 8, 0]

0.63 10 c225 remove first and last two elements

(𝜆 x (drop 2 (droplast 2 x)))

[8, 28, 97, 66, 46] → [97]
[53, 95, 39, 49, 62, 74, 5, 4] → [39, 49, 62, 74]
[11, 87, 44, 41, 6, 27] → [44, 41]
[2, 40, 29, 81, 54, 48, 76, 15, 8, 80]→ [29, 81, 54, 48, 76, 15]
[13, 38, 91, 64, 16, 0, 5] → [91, 64, 16]

0.629 22 c067 swap the first and last elements

(𝜆 x (cons (last x) (append (drop 1 (droplast 1 x)) (first x))))

[4, 8, 9, 9] → [9, 8, 9, 4]
[5, 0, 7, 6, 6, 0, 6, 0] → [0, 0, 7, 6, 6, 0, 6, 5]
[4, 7] → [7, 4]
[2, 1, 6, 3, 4, 0, 9, 8, 7, 4]→ [4, 1, 6, 3, 4, 0, 9, 8, 7, 2]
[1, 3, 2, 8, 8, 5, 5] → [5, 3, 2, 8, 8, 5, 1]

0.626 10 c112 count from 1 to the last element

(𝜆 x (range 1 1 (last x)))

[25, 0, 22, 48, 7] → [1, 2, 3, 4, 5, 6, 7]
[2, 66, 71, 42, 29, 99, 95, 81, 19, 3]→ [1, 2, 3]
[5, 26, 75, 4, 97, 32, 73, 59, 1] → [1]
[9, 10] → [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
[76, 61, 15, 74, 77, 6, 2] → [1, 2]

214

𝜇 ℒ ID Description, Program, & Examples

0.624 6 c030 remove the last two elements

(𝜆 x (droplast 2 x))

[6, 4, 8, 1, 0] → [6, 4, 8]
[9, 7, 4, 3, 8, 1] → [9, 7, 4, 3]
[2, 5, 7, 8, 2, 2, 9, 3, 1, 0]→ [2, 5, 7, 8, 2, 2, 9, 3]
[5, 4, 5, 0] → [5, 4]
[6, 2, 9, 7, 8, 3, 8, 5, 0] → [6, 2, 9, 7, 8, 3, 8]

0.622 17 c149 replace each element, M, with M * element 1; remove element 1

(𝜆 x (map (𝜆 y (* y (first x))) (drop 1 x)))

[5, 2, 13, 6, 3]→ [10, 65, 30, 15]
[3, 33] → [99]
[9] → []
[8, 2, 6, 9] → [16, 48, 72]
[6, 3, 1] → [18, 6]

0.615 12 c148 count from 1 to each original element, in order of appearance

(𝜆 x (flatten (map (range 1 1) x)))

[2, 5, 1, 4, 1]→ [1, 2, 1, 2, 3, 4, 5, 1, 1, 2, 3, 4, 1]
[3, 3, 2] → [1, 2, 3, 1, 2, 3, 1, 2]
[5, 4] → [1, 2, 3, 4, 5, 1, 2, 3, 4]
[3, 0, 5, 2] → [1, 2, 3, 1, 2, 3, 4, 5, 1, 2]
[5] → [1, 2, 3, 4, 5]

0.609 8 c017 replace element 2 with an 8 if there is an element 2

(𝜆 x (replace 2 8 x))

[9, 1, 7, 7] → [9, 8, 7, 7]
[9, 2, 1, 6, 4, 0] → [9, 8, 1, 6, 4, 0]
[0] → [0]
[1, 4, 2, 5, 3, 9, 7, 2]→ [1, 8, 2, 5, 3, 9, 7, 2]
[0, 2, 2] → [0, 8, 2]

0.604 22 c092 concatenate [92, 63, 34, 18, 55] with input

(𝜆 x (cons 92 (cons 63 (cons 34 (cons 18 (cons 55 x))))))

[97, 45, 97, 8] → [92, 63, 34, 18, 55, 97, 45, 97, 8]
[7, 87, 87, 87, 5, 11] → [92, 63, 34, 18, 55, 7, 87, 87, 87, 5, 11]
[8, 54, 84, 7, 9, 94, 3, 40, 6]→ [92, 63, 34, 18, 55, 8, 54, 84, 7, 9, 94, 3, 40, 6]
[1] → [92, 63, 34, 18, 55, 1]
[66, 66] → [92, 63, 34, 18, 55, 66, 66]

0.601 6 c077 input length

(𝜆 x (singleton (length x)))

[1, 7, 2, 0] → [4]
[8, 6, 6] → [3]
[2] → [1]
[8, 3, 9, 5, 7]→ [5]
[] → [0]

0.6 6 c098 add the index to every element

(𝜆 x (mapi + x))

[40, 52, 40, 50] → [41, 54, 43, 54]
[0, 0, 8, 8, 8, 8] → [1, 2, 11, 12, 13, 14]
[62, 4, 8, 85, 68, 9, 62, 85] → [63, 6, 11, 89, 73, 15, 69, 93]
[18, 5, 79, 21, 0, 47, 91] → [19, 7, 82, 25, 5, 53, 98]
[87, 56, 7, 56, 72, 33, 36, 57, 87, 7]→ [88, 58, 10, 60, 77, 39, 43, 65, 96, 17]

215

𝜇 ℒ ID Description, Program, & Examples

0.6 42 c248 elements after the last 0

(𝜆 x (first (fold (𝜆 y (𝜆 z (if (== z 0) (cons empty y) (cons (append (first y) z) (drop 1
y))))) (singleton empty) x)))
[9, 0, 4, 8, 0, 2, 46, 96, 30] → [2, 46, 96, 30]
[97, 0, 46, 8, 89, 0, 17, 3, 17, 7]→ [17, 3, 17, 7]
[0, 1, 5, 1, 32, 5, 41, 5, 0, 87] → [87]
[70, 6, 11, 0, 37, 9, 9, 0, 13, 54]→ [13, 54]
[86, 7, 99, 0, 99, 0, 3, 4, 38] → [3, 4, 38]

0.599 21 c199 elements in ascending order, each preceded by its rank

(𝜆 x (flatten (zip (range 1 1 (length x)) (sort (𝜆 y y) x))))

[59, 22, 86, 64, 25] → [1, 22, 2, 25, 3, 59, 4, 64, 5, 86]
[72, 69, 74, 27] → [1, 27, 2, 69, 3, 72, 4, 74]
[6, 99, 46, 0, 96, 49, 77]→ [1, 0, 2, 6, 3, 46, 4, 49, 5, 77, 6, 96, 7, 99]
[12, 81] → [1, 12, 2, 81]
[42] → [1, 42]

0.597 6 c007 remove all but the first 2 elements

(𝜆 x (take 2 x))

[0, 2, 2, 0] → [0, 2]
[] → []
[1] → [1]
[3, 3, 1, 9, 8]→ [3, 3]
[7, 8, 5] → [7, 8]

0.591 21 c176 sums of each consecutive pair of elements, in order of appearance

(𝜆 x (map (𝜆 y (sum y)) (zip (droplast 1 x) (drop 1 x))))

[22, 1, 6, 8, 51, 26] → [23, 7, 14, 59, 77]
[8, 2, 65, 9, 81, 16, 79, 3, 80, 5]→ [10, 67, 74, 90, 97, 95, 82, 83, 85]
[8, 5, 28, 36, 58, 40, 0] → [13, 33, 64, 94, 98, 40]
[31, 29, 3, 19, 5, 50, 0, 76] → [60, 32, 22, 24, 55, 50, 76]
[20, 71, 5, 1, 38, 4, 93, 2, 50] → [91, 76, 6, 39, 42, 97, 95, 52]

0.588 12 c066 left-rotate by 1

(𝜆 x (append (drop 1 x) (first x)))

[5, 6, 5, 8] → [6, 5, 8, 5]
[1, 6, 6] → [6, 6, 1]
[8, 2, 4, 7, 3, 0] → [2, 4, 7, 3, 0, 8]
[7, 9, 8, 2, 5, 1, 2, 4]→ [9, 8, 2, 5, 1, 2, 4, 7]
[3, 7] → [7, 3]

0.587 16 c053 replace element 2 with element 1

(𝜆 x (concat (repeat (first x) 2) (drop 2 x)))

[8, 9, 6, 4] → [8, 8, 6, 4]
[6, 5, 8, 9, 1, 3, 4, 1, 0]→ [6, 6, 8, 9, 1, 3, 4, 1, 0]
[9, 3, 7, 0, 1, 5, 5, 0] → [9, 9, 7, 0, 1, 5, 5, 0]
[5] → [5, 5]
[2, 0, 2, 0, 2] → [2, 2, 2, 0, 2]

0.584 22 c047 concatenate [9, 6, 3, 8, 5] and input

(𝜆 x (cons 9 (cons 6 (cons 3 (cons 8 (cons 5 x))))))

[8, 3, 7, 9] → [9, 6, 3, 8, 5, 8, 3, 7, 9]
[4, 6, 7, 0, 7, 7, 1, 9] → [9, 6, 3, 8, 5, 4, 6, 7, 0, 7, 7, 1, 9]
[6] → [9, 6, 3, 8, 5, 6]
[] → [9, 6, 3, 8, 5]
[5, 2, 0, 2, 4, 0, 3, 2, 4]→ [9, 6, 3, 8, 5, 5, 2, 0, 2, 4, 0, 3, 2, 4]

216

𝜇 ℒ ID Description, Program, & Examples

0.584 10 c064 remove the first and last elements

(𝜆 x (drop 1 (droplast 1 x)))

[4, 5, 0, 0] → [5, 0]
[3, 8, 3, 8, 3] → [8, 3, 8]
[4, 9, 4, 9, 4, 9, 9, 9, 9, 9]→ [9, 4, 9, 4, 9, 9, 9, 9]
[5, 7, 7, 9, 8, 1, 4, 0, 6] → [7, 7, 9, 8, 1, 4, 0]
[2, 1, 1, 2, 2, 7, 2, 7] → [1, 1, 2, 2, 7, 2]

0.584 6 c078 maximum element

(𝜆 x (singleton (max x)))

[2, 3, 0, 1] → [3]
[2, 7, 9, 5, 4, 0, 8, 1, 3, 6]→ [9]
[1, 0] → [1]
[7, 1, 5, 4, 0, 2, 8, 6] → [8]
[2, 5, 3, 0, 6, 4, 1] → [6]

0.584 32 c119 prepend or append 8, if necessary, so the list begins and ends with 8

(𝜆 x ((𝜆 y (concat (y first) (concat x (y last)))) (𝜆 z (if (== (z x) 8) empty (singleton 8)))))

[8, 87, 23, 25, 34] → [8, 87, 23, 25, 34, 8]
[63] → [8, 63, 8]
[47, 68, 84, 8] → [8, 47, 68, 84, 8]
[46, 77] → [8, 46, 77, 8]
[52, 7, 2, 91, 5, 75, 58, 3, 8]→ [8, 52, 7, 2, 91, 5, 75, 58, 3, 8]

0.573 6 c135 remove the first 7

(𝜆 x (cut_val 7 x))

[7, 99, 63, 7, 7] → [99, 63, 7, 7]
[7, 7] → [7]
[47, 14, 45, 7, 6, 59, 48, 50, 5, 19]→ [47, 14, 45, 6, 59, 48, 50, 5, 19]
[8, 38, 3, 42, 7, 78, 71] → [8, 38, 3, 42, 78, 71]
[85, 46, 84, 79, 44, 7, 1, 2, 7] → [85, 46, 84, 79, 44, 1, 2, 7]

0.571 11 c198 unique elements in descending order

(𝜆 x (reverse (sort (𝜆 y y) (unique x))))

[62, 86, 85, 62, 29, 8, 85, 29] → [86, 85, 62, 29, 8]
[26, 26, 26, 26, 10, 55, 6, 10, 55, 6] → [55, 26, 10, 6]
[18, 65, 98, 98, 98, 18, 18, 98, 65] → [98, 65, 18]
[7, 5, 5, 69, 69, 30, 30, 7, 5] → [69, 30, 7, 5]
[73, 66, 24, 52, 24, 43, 73, 24, 66, 52]→ [73, 66, 52, 43, 24]

0.568 14 c219 keep only every other element, starting from the end of the list

(𝜆 x (reverse (filteri (𝜆 y (𝜆 z (is_odd y))) (reverse x))))

[42, 0, 46, 12, 8, 58, 50] → [42, 46, 8, 50]
[7, 93, 99, 86, 30, 97, 60, 62, 57, 17]→ [93, 86, 97, 62, 17]
[3, 52, 78, 9, 94, 54, 90, 89, 37, 14] → [52, 9, 54, 89, 14]
[65, 2, 66, 47, 28, 71, 9, 5] → [2, 47, 71, 5]
[81, 22, 85, 82, 36, 59, 16, 8, 45] → [81, 85, 36, 16, 45]

0.566 10 c075 remove every element with an even index

(𝜆 x (filteri (𝜆 y (𝜆 z (is_odd y))) x))

[6, 5, 2, 9] → [6, 2]
[7, 3] → [7]
[0, 1, 1, 9, 2, 0, 1, 0, 9, 2]→ [0, 1, 2, 1, 9]
[8, 0, 4, 2, 8] → [8, 4, 8]
[7, 4, 5, 2, 5, 5, 2] → [7, 5, 5, 2]

217

𝜇 ℒ ID Description, Program, & Examples

0.559 10 c177 interleave the input and the reversed input

(𝜆 x (flatten (zip x (reverse x))))

[64, 98, 27, 26, 32] → [64, 32, 98, 26, 27, 27, 26, 98, 32, 64]
[1, 15, 28, 4] → [1, 4, 15, 28, 28, 15, 4, 1]
[80, 2, 61, 24, 37, 8]→ [80, 8, 2, 37, 61, 24, 24, 61, 37, 2, 8, 80]
[93, 50, 81] → [93, 81, 50, 50, 81, 93]
[59, 90] → [59, 90, 90, 59]

0.553 6 c025 remove element 2

(𝜆 x (cut_idx 2 x))

[1, 1, 4, 5] → [1, 4, 5]
[2, 6] → [2]
[1, 6, 6, 0, 8, 3, 9, 0, 7, 9]→ [1, 6, 0, 8, 3, 9, 0, 7, 9]
[3, 0, 4, 9, 5] → [3, 4, 9, 5]
[7, 2, 5, 0, 8, 4, 1] → [7, 5, 0, 8, 4, 1]

0.552 21 c125 keep only elements whose tens digit equals the tens digit of element 1

(𝜆 x (filter (𝜆 y (== (/ (first x) 10) (/ y 10))) x))

[41, 6, 41, 27, 55, 66, 42, 3] → [41, 41, 42]
[61, 62, 9, 3, 56, 85, 64, 82, 49] → [61, 62, 64]
[5, 2, 90, 75, 57, 1, 7, 19, 8, 84] → [5, 2, 1, 7, 8]
[32, 32, 4, 3, 32, 7, 30, 96, 5] → [32, 32, 32, 30]
[99, 99, 97, 79, 16, 75, 75, 97, 16, 8]→ [99, 99, 97, 97]

0.545 22 c211 reverse input; insert elements 4 and 5 so they are fourth and third from last, respectively

(𝜆 x (splice (slice 4 5 x) (- (length x) 2) (reverse x)))

[22, 1, 7, 65, 21, 77] → [77, 21, 65, 65, 21, 7, 1, 22]
[94, 72, 79, 4, 47, 46] → [46, 47, 4, 4, 47, 79, 72, 94]
[97, 59, 0, 39, 8, 48, 53, 4] → [4, 53, 48, 8, 39, 39, 8, 0, 59, 97]
[12, 5, 18, 62, 78, 28, 31, 68]→ [68, 31, 28, 78, 62, 62, 78, 18, 5, 12]
[49, 6, 23, 92, 45, 36, 75] → [75, 36, 45, 92, 92, 45, 23, 6, 49]

0.54 8 c087 swap elements 2 and 3

(𝜆 x (swap 2 3 x))

[36, 77, 25, 3, 1] → [36, 25, 77, 3, 1]
[21, 94, 56, 2, 0, 0, 21, 94] → [21, 56, 94, 2, 0, 0, 21, 94]
[26, 71, 7, 31, 5, 21, 55, 4, 87] → [26, 7, 71, 31, 5, 21, 55, 4, 87]
[72, 88, 72, 88, 45, 88, 72, 85, 45, 79]→ [72, 72, 88, 88, 45, 88, 72, 85, 45, 79]
[0, 9, 0, 68, 68, 9] → [0, 0, 9, 68, 68, 9]

0.539 8 c013 elements 3 through 7

(𝜆 x (slice 3 7 x))

[8, 5, 5, 8, 8, 5, 5, 5] → [5, 8, 8, 5, 5]
[9, 9, 4, 4, 9, 3, 1, 1, 9] → [4, 4, 9, 3, 1]
[6, 4, 2, 4, 0, 0, 8, 7, 5] → [2, 4, 0, 0, 8]
[3, 2, 0, 3, 4, 4, 6, 6] → [0, 3, 4, 4, 6]
[9, 8, 7, 4, 1, 3, 2, 0, 6, 5]→ [7, 4, 1, 3, 2]

0.534 38 c069 concatenate [9, 3, 4, 0], input, and [7, 2, 9, 1]

(𝜆 x (concat (cons 9 (cons 3 (cons 4 (singleton 0)))) (concat x (cons 7 (cons 2 (cons 9 (singleton
1)))))))
[0, 5, 5, 5]→ [9, 3, 4, 0, 0, 5, 5, 5, 7, 2, 9, 1]
[] → [9, 3, 4, 0, 7, 2, 9, 1]
[8, 4, 7] → [9, 3, 4, 0, 8, 4, 7, 7, 2, 9, 1]
[8] → [9, 3, 4, 0, 8, 7, 2, 9, 1]
[7, 1] → [9, 3, 4, 0, 7, 1, 7, 2, 9, 1]

218

𝜇 ℒ ID Description, Program, & Examples

0.534 14 c117 left-rotate by three elements

(𝜆 x (concat (drop 3 x) (take 3 x)))

[77, 90, 44, 9, 84] → [9, 84, 77, 90, 44]
[57, 0, 17, 95, 1, 94, 68, 31, 46]→ [95, 1, 94, 68, 31, 46, 57, 0, 17]
[20, 6, 21, 56, 79, 8] → [56, 79, 8, 20, 6, 21]
[23, 5, 42, 7, 52, 74, 25] → [7, 52, 74, 25, 23, 5, 42]
[2, 81, 92, 80] → [80, 2, 81, 92]

0.531 18 c228 replace each element with the number of occurrences of that element so far in the input

(𝜆 x (mapi (𝜆 y (𝜆 z (count (== z) (take y x)))) x))

[42, 22, 22, 42, 42] → [1, 1, 2, 2, 3]
[11, 11, 6, 11, 11, 6, 6, 6]→ [1, 2, 1, 3, 4, 2, 3, 4]
[80, 80, 80, 80] → [1, 2, 3, 4]
[84, 84, 84] → [1, 2, 3]
[58, 58] → [1, 2]

0.53 13 c197 replace each element with the number of occurrences of that element

(𝜆 x (map (𝜆 y (count (== y) x)) x))

[43, 43, 19, 72, 73] → [2, 2, 1, 1, 1]
[23, 53, 46, 79, 41, 0, 51, 41, 16, 93]→ [1, 1, 1, 1, 2, 1, 1, 2, 1, 1]
[70, 70, 70, 70, 42, 42] → [4, 4, 4, 4, 2, 2]
[27, 74, 27, 74, 64, 74, 27, 74, 74] → [3, 5, 3, 5, 1, 5, 3, 5, 5]
[8, 80, 80] → [1, 2, 2]

0.527 10 c065 prepend 9 and append 7

(𝜆 x (cons 9 (append x 7)))

[1, 0, 0, 8] → [9, 1, 0, 0, 8, 7]
[2, 2, 8] → [9, 2, 2, 8, 7]
[] → [9, 7]
[7] → [9, 7, 7]
[1, 3, 1, 5, 6, 4, 4, 3, 8]→ [9, 1, 3, 1, 5, 6, 4, 4, 3, 8, 7]

0.524 14 c156 reverse the input and add each element to its new index

(𝜆 x (mapi (𝜆 y (𝜆z (+ z y))) (reverse x)))

[38, 61, 56, 17, 51, 4] → [5, 53, 20, 60, 66, 44]
[28, 7, 69, 5, 55, 18, 83, 71, 46] → [47, 73, 86, 22, 60, 11, 76, 15, 37]
[2, 33, 39, 42, 8, 7, 1, 64] → [65, 3, 10, 12, 47, 45, 40, 10]
[37, 23, 94, 5, 27, 72, 0] → [1, 74, 30, 9, 99, 29, 44]
[6, 48, 13, 78, 18, 88, 30, 86, 62, 21]→ [22, 64, 89, 34, 93, 24, 85, 21, 57, 16]

0.523 11 c110 three largest elements in ascending order

(𝜆 x (takelast 3 (sort (𝜆 y y) x)))

[97, 7, 13, 2, 55] → [13, 55, 97]
[18, 35, 7, 70, 96, 74, 37, 45] → [70, 74, 96]
[45, 92, 5, 40, 3, 78, 81, 50, 4, 76]→ [78, 81, 92]
[85, 89, 8, 7, 9, 44, 30, 68, 69] → [69, 85, 89]
[57, 15, 51, 31, 33, 61, 6] → [51, 57, 61]

0.521 11 c233 number of occurrences of each unique element, in order of appearance

(𝜆 x (map length (group (𝜆 y y) x)))

[2, 82, 82, 52, 87, 41, 87] → [1, 2, 1, 2, 1]
[4, 63, 9, 68, 62, 67, 9, 22, 56] → [1, 1, 2, 1, 1, 1, 1, 1]
[34, 34, 34, 34, 34, 34, 34, 34, 34, 34]→ [10]
[71, 17, 71, 71, 71, 17, 71, 17] → [5, 3]
[33, 55, 84, 84, 64, 33, 55, 64, 6, 18] → [2, 2, 2, 2, 1, 1]

219

𝜇 ℒ ID Description, Program, & Examples

0.519 8 c003 remove all but element 7

(𝜆 x (singleton (nth 7 x)))

[7, 2, 3, 9, 0, 4, 5, 6] → [5]
[6, 1, 6, 4, 4, 7, 0, 4, 6, 1]→ [0]
[0, 5, 7, 4, 9, 1, 3, 6, 7, 8]→ [3]
[6, 8, 5, 0, 2, 9, 8, 2] → [8]
[1, 0, 8, 6, 7, 2, 9, 3, 5, 4]→ [9]

0.519 12 c230 count by 2 from the smallest element to the largest element

(𝜆 x (range (min x) 2 (max x)))

[8, 6, 7, 12, 2]→ [2, 4, 6, 8, 10, 12]
[44, 48] → [44, 46, 48]
[5, 1, 7] → [1, 3, 5, 7]
[16, 6, 9, 4] → [4, 6, 8, 10, 12, 14, 16]
[78, 86] → [78, 80, 82, 84, 86]

0.515 8 c122 remove all but penultimate element

(𝜆 x (singleton (second (reverse x))))

[22, 46, 27, 2, 89] → [2]
[77, 4, 57] → [4]
[80, 70] → [80]
[9, 26, 65, 71, 33, 5, 67, 3, 40, 56]→ [40]
[98, 55, 32, 41, 8, 93, 11, 44, 88] → [44]

0.514 10 c020 replace the first element with the last element

(𝜆 x (replace 1 (last x) x))

[7, 7, 7, 9] → [9, 7, 7, 9]
[8, 7, 6, 8, 9, 4, 3] → [3, 7, 6, 8, 9, 4, 3]
[9, 9, 2, 3, 3, 3, 2, 1, 1]→ [1, 9, 2, 3, 3, 3, 2, 1, 1]
[8, 9, 7, 2, 7, 0] → [0, 9, 7, 2, 7, 0]
[8, 5] → [5, 5]

0.506 46 c235 count up and down between elements

(𝜆 x (fold (𝜆 y (𝜆 z (concat y (drop 1 (range (last y) (if (> z (last y)) 1 -1) z))))) (take 1
x) (drop 1 x)))
[8, 7, 5, 6, 15]→ [8, 7, 6, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]
[46, 43, 42] → [46, 45, 44, 43, 42]
[0, 4, 7, 6] → [0, 1, 2, 3, 4, 5, 6, 7, 6]
[1, 5, 7] → [1, 2, 3, 4, 5, 6, 7]
[6, 9] → [6, 7, 8, 9]

0.503 19 c157 each element followed by 0 if even or 1 if odd, in order of appearance

(𝜆 x (flatten (map (𝜆 y (cons y (singleton (% y 2)))) x)))

[32, 3, 5, 81, 16, 6] → [32, 0, 3, 1, 5, 1, 81, 1, 16, 0, 6, 0]
[63, 18, 24, 92, 44, 89, 30]→ [63, 1, 18, 0, 24, 0, 92, 0, 44, 0, 89, 1, 30, 0]
[74, 71, 15, 46, 26, 59] → [74, 0, 71, 1, 15, 1, 46, 0, 26, 0, 59, 1]
[78, 94, 6, 90, 7, 77, 79] → [78, 0, 94, 0, 6, 0, 90, 0, 7, 1, 77, 1, 79, 1]
[96, 28, 95, 6, 4, 57, 9] → [96, 0, 28, 0, 95, 1, 6, 0, 4, 0, 57, 1, 9, 1]

0.5 26 c185 replace the sublist between the first and last elements with its sum

(𝜆 x (cons (first x) (cons (sum (drop 1 (droplast 1 x))) (takelast 1 x))))

[41, 9, 5, 45, 30, 89] → [41, 89, 89]
[65, 0, 2, 23, 7, 21, 5, 3, 74] → [65, 61, 74]
[16, 19, 36, 12, 4, 6, 8, 2, 0, 23]→ [16, 87, 23]
[53, 3, 1, 4, 26, 41, 35] → [53, 75, 35]
[81, 29, 31, 15, 7, 9, 4, 47] → [81, 95, 47]

220

𝜇 ℒ ID Description, Program, & Examples

0.5 11 c213 three smallest elements in ascending order

(𝜆 x (take 3 (sort (𝜆 y y) x)))

[16, 25, 95, 44, 39] → [16, 25, 39]
[58, 7, 48, 1, 43, 8, 3, 84, 53, 0]→ [0, 1, 3]
[62, 5, 41, 7, 68, 65, 3, 32, 18] → [3, 5, 7]
[83, 23, 2, 52, 61, 59] → [2, 23, 52]
[86, 19, 21, 17, 40, 45, 13] → [13, 17, 19]

0.495 16 c184 keep only odd elements with an even index

(𝜆 x (filteri (𝜆 y (𝜆 z (and (is_even y) (is_odd z)))) x))

[6, 91, 0, 77, 18, 25] → [91, 77, 25]
[19, 45, 91, 1, 70, 33, 0, 81, 47, 73]→ [45, 1, 33, 81, 73]
[82, 7, 87, 9, 2, 31, 67] → [7, 9, 31]
[54, 97, 49, 5, 6, 35, 2, 1, 78] → [97, 5, 35, 1]
[4, 75, 8, 63, 18, 3, 51, 7] → [75, 63, 3, 7]

0.492 12 c155 multiply each element by its index

(𝜆 x (mapi (𝜆 y (𝜆 z (* z y))) x))

[2, 0, 6, 0, 3, 2] → [2, 0, 18, 0, 15, 12]
[3, 7, 9, 8, 0, 6, 1, 2] → [3, 14, 27, 32, 0, 36, 7, 16]
[5, 5, 10, 5, 6, 4, 5] → [5, 10, 30, 20, 30, 24, 35]
[2, 4, 2, 1, 0, 2, 9, 1, 7, 6]→ [2, 8, 6, 4, 0, 12, 63, 8, 63, 60]
[9, 3, 3, 5, 8, 0, 7, 4, 2] → [9, 6, 9, 20, 40, 0, 49, 32, 18]

0.49 18 c082 remove all but element 3

(𝜆 x (if (> 3 (length x)) empty (singleton (third x))))

[10, 6, 2, 99, 0] → [2]
[15] → []
[18, 79, 7, 5, 3, 7, 3, 5, 79] → [7]
[96, 40] → []
[91, 75, 3, 6, 8, 42, 11, 4, 1, 60]→ [3]

0.487 16 c231 the number of occurrences of each unique element in ascending order

(𝜆 x (sort (𝜆 y y) (map length (group (𝜆 z z) x))))

[80, 5, 98, 32, 98, 80, 98] → [1, 1, 2, 3]
[92, 92, 92, 92, 21, 21, 92, 92] → [2, 6]
[78, 34, 78, 78, 34, 34, 4, 4, 34, 4] → [3, 3, 4]
[33, 31, 71, 33, 59, 64, 31, 31, 59, 7]→ [1, 1, 1, 2, 2, 3]
[38, 38, 38, 38, 38, 38, 38, 38, 38] → [9]

0.485 11 c099 remove all elements whose value < 50

(𝜆 x (filter (𝜆 y (> y 49)) x))

[8, 87, 2, 64, 48, 79] → [87, 64, 79]
[1, 7, 8, 25, 0, 40, 53, 94] → [53, 94]
[78, 18, 92, 42, 95, 3, 98] → [78, 92, 95, 98]
[7, 28, 13, 8, 0, 28, 8, 28] → []
[86, 5, 86, 86, 11, 99, 99, 99, 5]→ [86, 86, 86, 99, 99, 99]

0.485 44 c247 elements before the first 0

(𝜆 x (first (reverse (fold (𝜆 y (𝜆 z (if (== z 0) (cons empty y) (cons (append (first y) z))
(drop 1 y)))) (singleton empty) x))))
[5, 26, 7, 23, 0, 93, 0, 18, 1] → [5, 26, 7, 23]
[1, 71, 89, 0, 71, 46, 8, 87, 0, 7]→ [1, 71, 89]
[9, 86, 0, 60, 69, 53, 1, 0, 6, 60]→ [9, 86]
[4, 0, 80, 87, 87, 0, 45, 2, 4] → [4]
[84, 0, 20, 0, 63, 63, 20, 20, 20] → [84]

221

𝜇 ℒ ID Description, Program, & Examples

0.476 6 c008 the first 6 elements

(𝜆 x (take 6 x))

[1, 3, 9, 8, 1, 6, 7] → [1, 3, 9, 8, 1, 6]
[9, 2, 2, 6, 9, 9, 2, 9]→ [9, 2, 2, 6, 9, 9]
[3, 7, 7, 0, 3, 8, 5] → [3, 7, 7, 0, 3, 8]
[0, 4, 4, 0, 9, 0, 4] → [0, 4, 4, 0, 9, 0]
[4, 0, 5, 6, 5, 0, 5] → [4, 0, 5, 6, 5, 0]

0.473 14 c055 swap elements 1 and 3 and elements 2 and 4

(𝜆 x (swap 1 3 (swap 2 4 x)))

[4, 8, 7, 9] → [7, 9, 4, 8]
[0, 2, 6, 1, 9, 5, 6, 5, 3]→ [6, 1, 0, 2, 9, 5, 6, 5, 3]
[8, 1, 7, 0, 5] → [7, 0, 8, 1, 5]
[9, 4, 4, 3, 9, 9, 3, 4] → [4, 3, 9, 4, 9, 9, 3, 4]
[3, 9, 7, 2, 0, 8, 5] → [7, 2, 3, 9, 0, 8, 5]

0.462 6 c029 remove the first two elements

(𝜆 x (drop 2 x))

[8, 1, 9, 9] → [9, 9]
[2, 2] → []
[5, 1, 0, 0, 5, 8, 1, 8, 3, 0]→ [0, 0, 5, 8, 1, 8, 3, 0]
[6, 6, 6] → [6]
[7, 0, 4, 1, 7] → [4, 1, 7]

0.459 14 c168 count from 1 to 10, skipping the input’s length

(𝜆 x (cut_val (length x) (range 1 1 10)))

[66, 74, 88, 49, 15] → [1, 2, 3, 4, 6, 7, 8, 9, 10]
[96, 25, 43, 86, 50, 44, 13, 87, 2, 84]→ [1, 2, 3, 4, 5, 6, 7, 8, 9]
[21, 85] → [1, 3, 4, 5, 6, 7, 8, 9, 10]
[98, 30, 27, 53, 7, 45, 0] → [1, 2, 3, 4, 5, 6, 8, 9, 10]
[65, 1, 69, 76, 33, 16] → [1, 2, 3, 4, 5, 7, 8, 9, 10]

0.45 6 c009 remove all but the first 6 elements

(𝜆 x (take 6 x))

[6, 2, 4, 4, 4, 8, 8] → [6, 2, 4, 4, 4, 8]
[7] → [7]
[5, 8, 8, 9, 9, 5, 8, 5]→ [5, 8, 8, 9, 9, 5]
[6, 7, 0] → [6, 7, 0]
[1, 1, 1, 1] → [1, 1, 1, 1]

0.442 8 c133 remove elements 2 through 5

(𝜆 x (cut_slice 2 5 x))

[17, 65, 41, 49, 9, 5] → [17, 5]
[85, 50, 30, 14, 6, 89, 57, 77] → [85, 89, 57, 77]
[73, 3, 2, 70, 21, 87, 86, 23, 76] → [73, 87, 86, 23, 76]
[11, 2, 74, 41, 1, 10, 0] → [11, 10, 0]
[31, 47, 82, 96, 52, 98, 3, 4, 68, 61]→ [31, 98, 3, 4, 68, 61]

0.435 27 c146 absolute difference of each consecutive pair, in order of appearance

(𝜆 x (map (𝜆 y (- (max y) (min y))) (zip (droplast 1 x) (drop 1 x))))

[87, 67, 47, 9, 44] → [20, 20, 38, 35]
[80, 98, 4, 25] → [18, 94, 21]
[2, 53, 31, 23, 49, 6, 16] → [51, 22, 8, 26, 43, 10]
[58, 86, 12, 66, 90, 20, 45, 64] → [28, 74, 54, 24, 70, 25, 19]
[8, 34, 17, 82, 4, 93, 5, 18, 41, 11]→ [26, 17, 65, 78, 89, 88, 13, 23, 30]

222

𝜇 ℒ ID Description, Program, & Examples

0.434 20 c004 remove all but element 7

(𝜆 x (if (> 7 (length x)) empty (singleton (nth 7 x))))

[7, 4] → []
[0, 3, 2, 9, 4, 6, 8, 4, 8] → [8]
[5, 6, 0, 2, 9, 7, 3, 2, 1, 8]→ [3]
[9, 9] → []
[5, 9, 8, 8, 5, 0, 0, 2] → [0]

0.433 15 c240 number of elements equal to the input length

(𝜆 x (singleton (count (𝜆 y (== (length x) y)) x)))

[21, 7, 7, 7, 83, 21, 29] → [3]
[8, 65, 5, 34, 8, 59, 18, 4] → [2]
[60, 24, 51, 8, 72, 9, 98, 2, 65, 1]→ [0]
[0, 5, 95, 3, 7, 91, 7] → [2]
[68, 3, 94, 22, 99, 16, 93, 2, 9] → [1]

0.43 14 c239 number of repetitions in the input

(𝜆 x (singleton (- (length x) (length (unique x)))))

[86, 27, 88, 71, 54, 86, 71, 54] → [3]
[25, 37, 28, 43, 14, 14, 6, 25, 51] → [2]
[13, 84, 48, 60, 84, 60, 21, 21, 96] → [3]
[52, 44, 0, 70, 7, 77, 18, 79, 44, 67]→ [1]
[75, 75, 22, 31, 9, 22, 62, 31, 12, 4]→ [3]

0.429 8 c246 number of unique elements

(𝜆 x (singleton (length (unique x))))

[76, 5, 19, 22, 19, 3, 9] → [6]
[98, 64, 57, 6, 45, 79, 2, 59, 92] → [9]
[99, 77, 42, 26, 75, 7, 90, 38] → [8]
[] → [0]
[37, 87, 33, 24, 18, 2, 17, 71, 47, 66]→ [10]

0.428 8 c138 remove all occurrences of element 1

(𝜆 x (cut_vals (first x) x))

[7, 32, 7, 32, 87] → [32, 32, 87]
[27, 38, 68, 75, 79, 8, 22, 0, 44, 1]→ [38, 68, 75, 79, 8, 22, 0, 44, 1]
[34, 34, 19, 34, 35, 34] → [19, 35]
[17, 17, 17] → []
[92, 31, 45, 92, 49, 26, 11, 3, 97] → [31, 45, 49, 26, 11, 3, 97]

0.427 8 c018 replace element 6 with a 3

(𝜆 x (replace 6 3 x))

[7, 7, 7, 7, 7, 7, 7] → [7, 7, 7, 7, 7, 3, 7]
[8, 8, 6, 8, 5, 1, 4, 0, 5] → [8, 8, 6, 8, 5, 3, 4, 0, 5]
[5, 3, 2, 8, 4, 6] → [5, 3, 2, 8, 4, 3]
[9, 9, 3, 0, 0, 9, 0, 0, 9, 3]→ [9, 9, 3, 0, 0, 3, 0, 0, 9, 3]
[9, 3, 1, 8, 3, 9, 3, 3, 1] → [9, 3, 1, 8, 3, 3, 3, 3, 1]

0.424 8 c012 remove all but elements 2 through 4

(𝜆 x (slice 2 4 x))

[3, 3, 4, 7, 6] → [3, 4, 7]
[7, 8, 2, 0, 4, 2]→ [8, 2, 0]
[6] → []
[2, 9, 4] → [9, 4]
[6, 8] → [8]

223

𝜇 ℒ ID Description, Program, & Examples

0.419 12 c232 mean value of the input

(𝜆 x (singleton (/ (sum x) (length x))))

[72, 14, 69, 77, 8]→ [48]
[94, 60, 0, 89, 41]→ [56]
[18, 10, 16, 4] → [12]
[13, 22, 68] → [34]
[52, 75, 71] → [66]

0.417 14 c094 swap elements 1 and 3 and elements 2 and 4

(𝜆 x (swap 1 3 (swap 2 4 x)))

[4, 1, 99, 66, 4] → [99, 66, 4, 1, 4]
[6, 35, 46, 67, 7, 7] → [46, 67, 6, 35, 7, 7]
[68, 90, 68, 31, 68, 58, 90] → [68, 31, 68, 90, 68, 58, 90]
[96, 35, 63, 96, 63, 52, 96, 95, 37, 95]→ [63, 96, 96, 35, 63, 52, 96, 95, 37, 95]
[73, 73, 5, 5, 73, 5, 5, 5, 5] → [5, 5, 73, 73, 73, 5, 5, 5, 5]

0.414 8 c086 swap elements 1 and 4

(𝜆 x (swap 1 4 x))

[72, 14, 74, 16, 27] → [16, 14, 74, 72, 27]
[56, 0, 49, 15, 49, 80, 18, 80, 18]→ [15, 0, 49, 56, 49, 80, 18, 80, 18]
[1, 35, 35, 9, 8, 41, 1, 85, 41, 7] → [9, 35, 35, 1, 8, 41, 1, 85, 41, 7]
[1, 5, 1, 5, 50, 1, 50] → [5, 5, 1, 1, 50, 1, 50]
[69, 3, 39, 51, 8, 51, 3, 3] → [51, 3, 39, 69, 8, 51, 3, 3]

0.413 15 c193 input in ascending order, minus an occurrence of both the smallest and largest elements

(𝜆 x (drop 1 (droplast 1 (sort (𝜆 y y) x))))

[37, 24, 71, 8, 0, 39, 6, 25, 90] → [6, 8, 24, 25, 37, 39, 71]
[6, 5, 7, 34, 78, 29, 23, 26, 1, 28] → [5, 6, 7, 23, 26, 28, 29, 34]
[53, 60, 91, 61, 12, 3, 68, 8, 79, 96]→ [8, 12, 53, 60, 61, 68, 79, 91]
[88, 46, 2, 10, 34, 56, 45, 4, 64] → [4, 10, 34, 45, 46, 56, 64]
[57, 77, 16, 17, 27, 44, 0, 42, 1] → [1, 16, 17, 27, 42, 44, 57]

0.4 6 c056 remove element 5

(𝜆 x (cut_idx 5 x))

[2, 1, 2, 6, 7, 2] → [2, 1, 2, 6, 2]
[5, 6, 9, 6, 6, 5, 9] → [5, 6, 9, 6, 5, 9]
[7, 6, 7, 8, 6, 0, 7, 6, 0, 5]→ [7, 6, 7, 8, 0, 7, 6, 0, 5]
[8, 8, 8, 8, 8, 8, 8, 8] → [8, 8, 8, 8, 8, 8, 8]
[1, 1, 1, 1, 1, 1, 1, 1, 1] → [1, 1, 1, 1, 1, 1, 1, 1]

0.396 20 c028 remove element 2 if element 1 > element 2, else remove element 3

(𝜆 x (cut_idx (if (> (first x) (second x)) 2 3) x))

[1, 2, 0, 6] → [1, 2, 6]
[3, 2, 5, 8, 0, 9, 5] → [3, 5, 8, 0, 9, 5]
[5, 7, 1, 9, 0, 6, 2, 8, 4, 7]→ [5, 7, 9, 0, 6, 2, 8, 4, 7]
[3, 1, 4] → [3, 4]
[3, 0, 7, 6, 9, 4] → [3, 7, 6, 9, 4]

0.395 21 c220 if input length is even, double each element, else triple it

(𝜆 x (map (𝜆 y (* y (if (is_even (length x)) 2 3))) x))

[4, 8, 3, 29, 15] → [12, 24, 9, 87, 45]
[5, 39] → [10, 78]
[19] → [57]
[1, 4, 0, 9, 25, 6, 2, 28, 7] → [3, 12, 0, 27, 75, 18, 6, 84, 21]
[43, 23, 11, 5, 8, 30, 41, 2]→ [86, 46, 22, 10, 16, 60, 82, 4]

224

𝜇 ℒ ID Description, Program, & Examples

0.394 8 c241 number of even elements

(𝜆 x (singleton (count is_even x)))

[49, 87, 13, 67, 4, 5, 8] → [2]
[0, 45, 84, 90, 72, 8, 68, 72, 30] → [8]
[5, 53, 61, 57, 7, 63, 12, 3] → [1]
[22, 22, 10, 6, 28, 26, 26, 16, 22, 26]→ [10]
[3, 44, 36, 82, 4, 6, 2, 14, 32, 32] → [9]

0.392 22 c060 elements 3, 2, 1, the number 4, then elements 5 and 7, in that order

(𝜆 x (swap 3 1 (replace 4 4 (cut_idx 6 (take 7 x)))))

[7, 9, 0, 2, 6, 8, 3, 5, 1] → [0, 9, 7, 4, 6, 3]
[1, 7, 8, 2, 5, 6, 0, 4, 3, 9]→ [8, 7, 1, 4, 5, 0]
[6, 7, 1, 3, 2, 0, 8, 9, 4, 5]→ [1, 7, 6, 4, 2, 8]
[9, 2, 0, 5, 8, 7, 6, 4, 1, 3]→ [0, 2, 9, 4, 8, 6]
[9, 2, 5, 1, 3, 4, 7, 0, 6, 8]→ [5, 2, 9, 4, 3, 7]

0.391 12 c169 second largest element

(𝜆 x (singleton (max (cut_vals (max x) x))))

[26, 68, 87, 84, 58, 10] → [84]
[8, 24, 51, 14, 2, 69, 9, 28, 48] → [51]
[5, 32, 76, 7, 90, 53, 65, 54] → [76]
[36, 99, 8, 9, 16, 67, 94, 0, 4, 40]→ [94]
[3, 13, 1, 95, 17, 20, 12] → [20]

0.39 8 c057 insert a 4 as element 7

(𝜆 x (insert 4 7 x))

[3, 3, 3, 3, 3, 3, 3] → [3, 3, 3, 3, 3, 3, 4, 3]
[2, 7, 8, 4, 0, 6, 5, 1] → [2, 7, 8, 4, 0, 6, 4, 5, 1]
[2, 3, 9, 7, 6, 0, 0, 8] → [2, 3, 9, 7, 6, 0, 4, 0, 8]
[2, 9, 9, 2, 9, 9, 2, 2, 2]→ [2, 9, 9, 2, 9, 9, 4, 2, 2, 2]
[5, 9, 3, 7, 2, 1, 6, 0, 8]→ [5, 9, 3, 7, 2, 1, 4, 6, 0, 8]

0.388 31 c150 count from element 1 up to each element, in order of appearance

(𝜆 x (flatten (map (𝜆 y (if (> y (first x)) (range (first x) 1 y) (singleton y))) x)))

[37, 20, 47, 8, 5] → [37, 20, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 8, 5]
[28, 29, 2] → [28, 28, 29, 2]
[83, 19, 7, 32, 9, 86]→ [83, 19, 7, 32, 9, 83, 84, 85, 86]
[13, 1, 18] → [13, 1, 13, 14, 15, 16, 17, 18]
[24, 15, 27, 4] → [24, 15, 24, 25, 26, 27, 4]

0.386 8 c033 swap elements 1 and 4

(𝜆 x (swap 1 4 x))

[8, 1, 8, 5, 5, 2] → [5, 1, 8, 8, 5, 2]
[7, 9, 1, 5, 6, 3, 0] → [5, 9, 1, 7, 6, 3, 0]
[7, 8, 6, 5, 6, 7, 7, 5, 6, 5]→ [5, 8, 6, 7, 6, 7, 7, 5, 6, 5]
[1, 9, 6, 2] → [2, 9, 6, 1]
[7, 8, 4, 6, 1, 2, 9, 5] → [6, 8, 4, 7, 1, 2, 9, 5]

0.386 17 c218 keep only elements 2 and following equal to element 1

(𝜆 x (filter (𝜆 y (== y (first x))) (drop 1 x)))

[93, 93, 52, 93, 99, 99, 71, 52] → [93, 93]
[90, 61, 9, 9, 37, 90, 30, 3, 3] → [90]
[55, 2, 55, 6, 6, 19, 53, 8, 55, 55] → [55, 55, 55]
[15, 25, 73, 6, 7, 20, 67, 13, 23] → []
[45, 27, 1, 45, 1, 27, 45, 45, 45, 1]→ [45, 45, 45, 45]

225

𝜇 ℒ ID Description, Program, & Examples

0.385 8 c014 remove all but elements 3 through 7

(𝜆 x (slice 3 7 x))

[6, 3, 0, 4] → [0, 4]
[9, 9, 1] → [1]
[0, 7, 9, 6, 1, 8, 2, 3] → [9, 6, 1, 8, 2]
[3, 0, 5, 7, 7, 5, 3, 0, 5]→ [5, 7, 7, 5, 3]
[9] → []

0.376 8 c136 remove the first occurrence of the largest element

(𝜆 x (cut_val (max x) x))

[95, 95, 73, 95, 23] → [95, 73, 95, 23]
[35, 22, 46, 94, 94, 52] → [35, 22, 46, 94, 52]
[2, 90, 8, 90, 72, 14, 13, 1, 80] → [2, 8, 90, 72, 14, 13, 1, 80]
[92, 92] → [92]
[61, 79, 89, 71, 74, 20, 30, 62, 67, 3]→ [61, 79, 71, 74, 20, 30, 62, 67, 3]

0.352 8 c083 remove all but element 7

(𝜆 x (singleton (nth 7 x)))

[47, 27, 63, 1, 28, 26, 82, 1] → [82]
[67, 3, 20, 9, 50, 72, 29, 9, 35, 82]→ [29]
[3, 4, 23, 57, 46, 60, 70, 7] → [70]
[6, 4, 54, 54, 5, 5, 4, 68] → [4]
[0, 6, 89, 5, 13, 89, 21, 21, 3, 30] → [21]

0.351 8 c019 replace element 6 with a 3 if there is an element 6

(𝜆 x (replace 6 3 x))

[4, 5, 5, 0, 4, 2] → [4, 5, 5, 0, 4, 3]
[6, 6] → [6, 6]
[3, 7, 2, 0, 4, 9, 8] → [3, 7, 2, 0, 4, 3, 8]
[1, 1, 7, 4, 0, 8, 9, 0] → [1, 1, 7, 4, 0, 3, 9, 0]
[4, 3, 5, 8, 3, 2, 7, 9, 1]→ [4, 3, 5, 8, 3, 3, 7, 9, 1]

0.347 14 c203 the first M positive multiples of the smallest element, where M is the input’s length

(𝜆 x (mapi (𝜆 y (𝜆 z (* (min x) y))) x))

[7, 3, 5, 2, 1] → [1, 2, 3, 4, 5]
[37, 82] → [37, 74]
[23, 92, 84] → [23, 46, 69]
[67, 64, 29, 99, 8, 62, 22, 81, 44]→ [8, 16, 24, 32, 40, 48, 56, 64, 72]
[36, 78, 19, 89] → [19, 38, 57, 76]

0.331 20 c115 the unique elements, prepended and appended by their sum

(𝜆 x (cons (sum (unique x)) (append (unique x) (sum (unique x)))))

[7, 17, 45, 17, 12] → [81, 7, 17, 45, 12, 81]
[4, 4, 31, 38, 38, 31, 38, 38] → [73, 4, 31, 38, 73]
[24, 3, 24, 1, 3, 2, 42, 2, 1, 42] → [72, 24, 3, 1, 2, 42, 72]
[27, 14, 14, 14, 14, 27, 27, 27, 27]→ [41, 27, 14, 41]
[] → [0, 0]

0.329 12 c207 element-wise sum of the input and the reversed input

(𝜆 x (map sum (zip x (reverse x))))

[7, 6, 9, 79, 46] → [53, 85, 18, 85, 53]
[14, 8, 22] → [36, 16, 36]
[1, 31, 84, 4, 68, 89]→ [90, 99, 88, 88, 99, 90]
[19, 1, 97, 62] → [81, 98, 98, 81]
[5, 13, 51] → [56, 26, 56]

226

𝜇 ℒ ID Description, Program, & Examples

0.325 28 c088 swap elements 1 and 4 if element 2 = element 3, else swap elements 2 and 3

(𝜆 x (if (== (second x) (third x)) (swap 1 4 x) (swap 2 3 x)))

[19, 1, 99, 19, 20, 99, 20] → [19, 99, 1, 19, 20, 99, 20]
[95, 31, 31, 4, 39, 5, 32, 0] → [4, 31, 31, 95, 39, 5, 32, 0]
[15, 53, 53, 95] → [95, 53, 53, 15]
[84, 86, 3, 84, 3, 89] → [84, 3, 86, 84, 3, 89]
[17, 41, 41, 85, 25, 2, 17, 25, 17, 10]→ [85, 41, 41, 17, 25, 2, 17, 25, 17, 10]

0.322 30 c040 append 3 if the list contains a 3, else append 9 if the list contains a 9

(𝜆 x (if (is_in x 3) (append x 3) (if (is_in x 9) (append x 9) x)))

[4, 8, 3, 7, 8] → [4, 8, 3, 7, 8, 3]
[5, 8, 2, 9, 0, 0] → [5, 8, 2, 9, 0, 0, 9]
[3, 8, 5] → [3, 8, 5, 3]
[9, 1, 1, 5, 1, 6, 5, 6]→ [9, 1, 1, 5, 1, 6, 5, 6, 9]
[7, 0] → [7, 0]

0.32 14 c085 remove all but element N + 1, N = element 1

(𝜆 x (singleton (nth (first x) (drop 1 x))))

[4, 39, 4, 48, 46, 48] → [46]
[2, 67, 52, 72, 93, 9, 67, 5, 68]→ [52]
[5, 4, 3, 80, 36, 66, 75] → [66]
[4, 28, 5, 26, 29, 6, 94, 3] → [29]
[1, 4, 4] → [4]

0.316 10 c111 repeat the largest element N times, where N is the smallest element

(𝜆 x (repeat (max x) (min x)))

[38, 76, 18, 31, 5] → [76, 76, 76, 76, 76]
[90, 28, 72, 2, 5, 94, 85, 88, 68]→ [94, 94]
[52, 75, 83, 30, 3, 93] → [93, 93, 93]
[1, 82, 56, 49, 1, 60, 60, 90] → [90]
[0, 24, 65] → []

0.316 6 c073 add the index to every element

(𝜆 x (mapi + x))

[4, 4, 4, 4] → [5, 6, 7, 8]
[1] → [2]
[5, 5, 5, 2, 2, 2] → [6, 7, 8, 6, 7, 8]
[1, 3, 3, 5, 3, 0, 0, 1, 0]→ [2, 5, 6, 9, 8, 6, 7, 9, 9]
[3, 3] → [4, 5]

0.315 20 c027 remove element 2 if element 1 = element 2, else remove element 3

(𝜆 x (cut_idx (if (== (first x) (second x)) 2 3) x))

[0, 0, 9, 0] → [0, 9, 0]
[8, 8, 4, 1, 8, 4, 1, 4] → [8, 4, 1, 8, 4, 1, 4]
[6, 4, 6, 2, 3, 3] → [6, 4, 2, 3, 3]
[1, 2, 5, 1, 3, 2, 5] → [1, 2, 1, 3, 2, 5]
[9, 9, 7, 7, 7, 6, 6, 7, 2]→ [9, 7, 7, 7, 6, 6, 7, 2]

0.312 18 c234 repetitions in order of first appearance

(𝜆 x (flatten (map (𝜆 y (drop 1 y)) (group (𝜆 z z) x))))

[66, 0, 66, 58, 25, 0, 25, 92] → [66, 0, 25]
[48, 1, 6, 94, 96, 65, 82, 45, 90, 5]→ []
[7, 26, 84, 6, 62, 77, 2, 84, 10, 80]→ [84]
[3, 22, 5, 24, 1, 22, 21, 19, 5, 2] → [22, 5]
[4, 16, 85, 16, 8, 16, 4, 85, 85] → [4, 16, 16, 85, 85]

227

𝜇 ℒ ID Description, Program, & Examples

0.307 8 c165 reverse the input and keep only even elements

(𝜆 x (filter is_even (reverse x)))

[68, 9, 86, 13, 57, 14, 72, 25, 69] → [72, 14, 86, 68]
[77, 5, 56, 4, 34, 22, 65, 94, 20, 3]→ [20, 94, 22, 34, 4, 56]
[42, 7, 59, 1, 92, 48, 24, 63, 5, 8] → [8, 24, 48, 92, 42]
[53, 5, 0, 7, 78, 43, 45, 39, 2] → [2, 78, 0]
[54, 0, 97, 79, 99, 50, 6, 93, 3, 84]→ [84, 6, 50, 0, 54]

0.306 17 c191 repeat each element N times, where N is its tens digit, in order of appearance

(𝜆 x (flatten (map (𝜆 y (repeat y (/ y 10))) x)))

[2, 0, 7, 30, 26] → [30, 30, 30, 26, 26]
[37] → [37, 37, 37]
[1, 12, 7, 9, 8, 23, 0, 6, 15]→ [12, 23, 23, 15]
[55, 5, 7, 20, 1, 27] → [55, 55, 55, 55, 55, 20, 20, 27, 27]
[3, 4, 2] → []

0.303 6 c026 remove element 3

(𝜆 x (cut_idx 3 x))

[4, 2, 2, 5] → [4, 2, 5]
[0, 7, 7, 4, 6] → [0, 7, 4, 6]
[3, 9, 8, 1, 6, 2, 0, 4, 5, 7]→ [3, 9, 1, 6, 2, 0, 4, 5, 7]
[1, 1, 3, 2, 2, 3, 3] → [1, 1, 2, 2, 3, 3]
[8, 3, 9] → [8, 3]

0.3 8 c059 swap elements 4 and 8

(𝜆 x (swap 4 8 x))

[0, 5, 3, 8, 1, 9, 4, 6, 2] → [0, 5, 3, 6, 1, 9, 4, 8, 2]
[6, 1, 8, 5, 2, 3, 7, 9, 0, 4]→ [6, 1, 8, 9, 2, 3, 7, 5, 0, 4]
[1, 0, 7, 8, 6, 4, 2, 6, 1, 9]→ [1, 0, 7, 6, 6, 4, 2, 8, 1, 9]
[9, 5, 5, 9, 3, 7, 6, 3, 9, 3]→ [9, 5, 5, 3, 3, 7, 6, 9, 9, 3]
[7, 3, 4, 0, 1, 6, 8, 1, 5] → [7, 3, 4, 1, 1, 6, 8, 0, 5]

0.298 11 c074 remove every element whose value < 8

(𝜆 x (filter (𝜆 y (> y 7)) x))

[8, 2, 7, 6, 8, 6] → [8, 8]
[9, 2, 0, 5, 7, 5, 2, 3, 4, 7]→ [9]
[8, 8, 8, 2, 7, 7, 2] → [8, 8, 8]
[0] → []
[8, 9, 9, 1, 1, 9, 8, 8, 9, 1]→ [8, 9, 9, 9, 8, 8, 9]

0.295 14 c173 replace element N with the largest element in elements 1 through N

(𝜆 x (mapi (𝜆 y (𝜆 z (max (take y x)))) x))

[2, 6, 74, 86, 1, 89] → [2, 6, 74, 86, 86, 89]
[8, 9, 19, 2, 67, 83, 53, 4, 56, 95]→ [8, 9, 19, 19, 67, 83, 83, 83, 83, 95]
[3, 5, 9, 50, 7, 62, 78, 0] → [3, 5, 9, 50, 50, 62, 78, 78]
[9, 11, 21, 25, 55, 48, 7, 1, 70] → [9, 11, 21, 25, 55, 55, 55, 55, 70]
[47, 66, 81, 0, 1, 99, 4] → [47, 66, 81, 81, 81, 99, 99]

0.294 34 c175 keep only elements larger than any preceding element

(𝜆 x (fold (𝜆 y (𝜆 z (if (> z (last y)) (append y z) y))) (take 1 x) (drop 1 x)))

[45, 58, 87, 48, 31, 34] → [45, 58, 87]
[7, 8, 39, 95, 11, 1, 72] → [7, 8, 39, 95]
[2, 44, 50, 62, 65, 9, 3, 8, 88, 91]→ [2, 44, 50, 62, 65, 88, 91]
[2, 25, 39, 51, 16, 5, 66, 7] → [2, 25, 39, 51, 66]
[4, 31, 40, 6, 63, 1, 3, 66, 88] → [4, 31, 40, 63, 66, 88]

228

𝜇 ℒ ID Description, Program, & Examples

0.294 29 c204 keep only elements followed by 0

(𝜆 x (map first (filter (𝜆 y (== (second y) 0)) (zip (droplast 1 x) (drop 1 x)))))

[9, 34, 0, 0, 96] → [34, 0]
[4, 0, 29, 3, 0, 5, 6, 51] → [4, 3]
[29, 28, 0, 2, 0, 64] → [28, 2]
[13, 53, 88, 0, 6, 65, 21, 0, 9] → [88, 21]
[28, 4, 97, 34, 14, 0, 0, 1, 0, 88]→ [14, 0, 1]

0.293 20 c031 remove whichever are equal: the two elements or the last two

(𝜆 x (if (== (first x) (second x)) drop droplast 2 x))

[6, 6, 6, 8] → [6, 8]
[0, 0, 5, 5, 0, 5, 5, 0] → [5, 5, 0, 5, 5, 0]
[1, 4, 4] → [1]
[4, 4, 8, 3, 4, 9, 9, 9, 3, 6]→ [8, 3, 4, 9, 9, 9, 3, 6]
[4, 0, 2, 4, 2, 2, 7, 9, 9] → [4, 0, 2, 4, 2, 2, 7]

0.292 15 c236 even elements divided by 2

(𝜆 x (map (𝜆 y (/ y 2)) (filter is_even x)))

[18, 37, 3, 50, 13, 95, 9] → [9, 25]
[25, 24, 7, 5, 38, 52, 74, 94] → [12, 19, 26, 37, 47]
[92, 84, 9, 23, 7, 87, 73, 28, 90] → [46, 42, 14, 45]
[64, 80, 8, 20, 2, 7, 6, 0, 44, 12] → [32, 40, 4, 10, 1, 3, 0, 22, 6]
[86, 53, 99, 5, 30, 65, 72, 93, 43]→ [43, 15, 36]

0.286 16 c054 replace elements 1 and 2 with element 3

(𝜆 x (concat (repeat (third x) 3) (drop 3 x)))

[5, 5, 9, 5] → [9, 9, 9, 5]
[7, 5, 2, 5, 7, 7, 2] → [2, 2, 2, 5, 7, 7, 2]
[4, 1, 1, 1, 1, 4, 4, 1, 3, 3]→ [1, 1, 1, 1, 1, 4, 4, 1, 3, 3]
[9, 5, 9, 2, 3, 8, 2, 3, 8] → [9, 9, 9, 2, 3, 8, 2, 3, 8]
[9, 3, 6, 7, 0] → [6, 6, 6, 7, 0]

0.267 12 c227 interleave input and reversed input; keep only unique elements in order of appearance

(𝜆 x (unique (flatten (zip x (reverse x)))))

[9, 66, 10, 0, 43, 66, 9] → [9, 66, 10, 43, 0]
[85, 39, 0, 33, 26, 27, 83, 18] → [85, 18, 39, 83, 0, 27, 33, 26]
[40, 75, 49, 75, 40, 49, 49, 68, 49] → [40, 49, 75, 68]
[55, 17, 20, 89, 22, 5, 20, 6, 65, 1] → [55, 1, 17, 65, 20, 6, 89, 22, 5]
[65, 99, 86, 86, 28, 42, 7, 42, 53, 86]→ [65, 86, 99, 53, 42, 7, 28]

0.265 20 c024 insert as element 2: 8 if element 1 > 5 else 5

(𝜆 x (insert (if (> 5 (first x)) 8 5) 2 x))

[8, 7, 4, 1] → [8, 5, 7, 4, 1]
[0, 8, 3] → [0, 8, 8, 3]
[9, 9, 4, 9, 6, 1]→ [9, 5, 9, 4, 9, 6, 1]
[7, 6, 0, 7, 6] → [7, 5, 6, 0, 7, 6]
[5, 2] → [5, 5, 2]

0.264 16 c200 tens digits of the elements in ascending order

(𝜆 x (sort (𝜆 y y) (map (𝜆 z (/ z 10)) x)))

[49, 0, 24, 33, 92] → [0, 2, 3, 4, 9]
[5, 54, 41, 72] → [0, 4, 5, 7]
[68, 5, 91, 59, 36, 18, 71]→ [0, 1, 3, 5, 6, 7, 9]
[14, 89, 46, 34, 79, 0] → [0, 1, 3, 4, 7, 8]
[87, 90, 16] → [1, 8, 9]

229

𝜇 ℒ ID Description, Program, & Examples

0.256 12 c010 elements 2 through N + 1, N = element 1

(𝜆 x (take (first x) (drop 1 x)))

[2, 3, 2, 7, 6] → [3, 2]
[3, 9, 8, 6, 5, 1] → [9, 8, 6]
[1, 2, 4, 5, 0, 8, 9, 7, 8]→ [2]
[5, 5, 5, 1, 1, 5] → [5, 5, 1, 1, 5]
[0, 2] → []

0.256 10 c123 remove all but element N, N = last element

(𝜆 x (singleton (nth (last x) x)))

[28, 48, 57, 36, 4] → [36]
[90, 54, 16, 3] → [16]
[22, 9, 14, 87, 71, 3] → [14]
[72, 1] → [72]
[69, 63, 50, 8, 86, 17, 0, 80, 19, 7]→ [0]

0.256 20 c023 insert as element 2: 8 if the list length > 5 else 5

(𝜆 x (insert (if (> 5 (length x)) 8 5) 2 x))

[2, 0, 5, 4] → [2, 8, 0, 5, 4]
[0, 2, 7, 9, 5, 8, 6, 3, 0, 9]→ [0, 5, 2, 7, 9, 5, 8, 6, 3, 0, 9]
[9, 7, 6, 1, 2] → [9, 5, 7, 6, 1, 2]
[8, 8] → [8, 8, 8]
[7, 0, 2] → [7, 8, 0, 2]

0.256 16 c194 reverse the input; prepend and append the input’s length

(𝜆 x (cons (length x) (append (reverse x) (length x))))

[76, 62, 80, 54, 23] → [5, 23, 54, 80, 62, 76, 5]
[81, 43] → [2, 43, 81, 2]
[1, 63, 21, 16] → [4, 16, 21, 63, 1, 4]
[92, 51, 35, 20, 9, 0, 18]→ [7, 18, 0, 9, 20, 35, 51, 92, 7]
[39, 90, 8] → [3, 8, 90, 39, 3]

0.25 19 c245 number of times element 1 appears in elements 2 and following

(𝜆 x (singleton (count (𝜆 y (== (first x) y)) (drop 1 x))))

[5, 5, 5, 5, 5, 41, 5] → [5]
[67, 23, 84, 30, 18, 80, 1, 69, 28] → [0]
[1, 40, 1, 3, 51, 9, 91, 1, 2, 1] → [3]
[59, 87, 59, 91, 53, 0, 2, 62, 76, 61]→ [1]
[18, 49, 72, 7, 71, 8, 27, 97] → [0]

0.242 20 c032 remove two elements: the first two if element 1 > last element, else the last two

(𝜆 x (if (> (first x) (last x)) drop droplast 2 x))

[0, 1, 7, 9, 3] → [0, 1, 7]
[7, 6, 4, 4, 1, 8, 3] → [4, 4, 1, 8, 3]
[6, 3, 2, 9, 9, 2, 6, 2] → [2, 9, 9, 2, 6, 2]
[0, 9, 4, 6, 8, 2, 5, 7, 1] → [0, 9, 4, 6, 8, 2, 5]
[3, 7, 0, 5, 1, 4, 8, 6, 2, 9]→ [3, 7, 0, 5, 1, 4, 8, 6]

0.242 6 c058 remove the first 7 elements

(𝜆 x (drop 7 x))

[7, 2, 9, 5, 3, 6, 4, 5] → [5]
[9, 8, 9, 8, 9, 8, 5, 0, 2, 5]→ [0, 2, 5]
[3, 0, 1, 4, 8, 2, 7] → []
[2, 8, 6, 3, 9, 5, 7, 6, 4] → [6, 4]
[9, 2, 4, 8, 0, 5, 3, 1, 7] → [1, 7]

230

𝜇 ℒ ID Description, Program, & Examples

0.242 10 c174 keep the first N elements, where N is the number of unique elements

(𝜆 x (take (length (unique x)) x))

[49, 32, 85, 49, 32, 2] → [49, 32, 85, 49]
[29, 0, 77, 35, 50, 7, 53, 35, 8, 82]→ [29, 0, 77, 35, 50, 7, 53, 35, 8]
[66, 71, 9, 72, 11, 86, 91, 9] → [66, 71, 9, 72, 11, 86, 91]
[67, 1, 24, 37, 5, 18, 67] → [67, 1, 24, 37, 5, 18]
[9, 52, 96, 27, 83, 4, 42, 98, 4] → [9, 52, 96, 27, 83, 4, 42, 98]

0.238 10 c229 keep only first N elements of the reversed input, N = element 1

(𝜆 x (take (first x) (reverse x)))

[7, 58, 5, 9, 21, 22, 51] → [51, 22, 21, 9, 5, 58, 7]
[4, 89, 16, 33, 53, 3, 6, 1, 76] → [76, 1, 6, 3]
[5, 18, 99, 7, 7, 99, 81, 11] → [11, 81, 99, 7, 7]
[1, 3, 49, 5, 2, 15, 77, 68, 27, 13]→ [13]
[9, 2, 72, 56, 1, 0, 26, 69, 95, 86]→ [86, 95, 69, 26, 0, 1, 56, 72, 2]

0.237 15 c162 replace each element, M, with 3 * M + 7

(𝜆 x (map (𝜆 y (+ 7 (* 3 y))) x))

[8, 0, 17, 5, 5, 0] → [31, 7, 58, 22, 22, 7]
[3, 9, 1, 7, 2, 4, 8, 0, 15, 5]→ [16, 34, 10, 28, 13, 19, 31, 7, 52, 22]
[18, 1, 5, 11, 2, 1, 18] → [61, 10, 22, 40, 13, 10, 61]
[8, 7, 3, 9, 5, 1, 5, 1, 4] → [31, 28, 16, 34, 22, 10, 22, 10, 19]
[19, 3, 4, 1, 6, 2, 0, 9] → [64, 16, 19, 10, 25, 13, 7, 34]

0.231 34 c039 append 3 if the list length is 3, else append 9 if the list length is 9

(𝜆 x (if (== (length x) 3) (append x 3) (if (== (length x) 9) (append x 9) x)))

[9, 3, 6] → [9, 3, 6, 3]
[2, 1, 0, 1, 7, 8, 1, 8, 7]→ [2, 1, 0, 1, 7, 8, 1, 8, 7, 9]
[9, 1, 4] → [9, 1, 4, 3]
[0, 5, 6, 5, 5] → [0, 5, 6, 5, 5]
[4, 5, 8, 4, 0, 2, 8, 7, 2]→ [4, 5, 8, 4, 0, 2, 8, 7, 2, 9]

0.23 26 c181 reverse the order of elements with even indices

(𝜆 x (flatten (zip (filteri (𝜆 y (𝜆 z (is_odd y)) x)) (reverse (filteri (𝜆 u (𝜆 v (is_even
u))) x)))))
[24, 99, 36, 61, 55, 6] → [24, 6, 36, 61, 55, 99]
[1, 53, 21, 2, 57, 48, 74, 7] → [1, 7, 21, 48, 57, 2, 74, 53]
[16, 97, 40, 26, 35, 65, 63, 59] → [16, 59, 40, 65, 35, 26, 63, 97]
[4, 19, 51, 96, 33, 3] → [4, 3, 51, 96, 33, 19]
[39, 50, 8, 82, 68, 52, 1, 89, 14, 5]→ [39, 5, 8, 89, 68, 52, 1, 82, 14, 50]

0.23 15 c163 replace each element, M, with 2 * M - 10

(𝜆 x (map (𝜆 y (- (* y 2) 10)) x))

[7, 9, 8, 24, 23]→ [4, 8, 6, 38, 36]
[6, 8, 47, 6] → [2, 6, 84, 2]
[7, 11, 7, 5] → [4, 12, 4, 0]
[9, 5, 22, 18] → [8, 0, 34, 26]
[33, 19, 29, 8] → [56, 28, 48, 6]

0.22 19 c154 triple each even element

(𝜆 x (map (𝜆 y (if (is_even y) (* 3 y) y)) x))

[5, 93, 14, 73, 4, 8] → [5, 93, 42, 73, 12, 24]
[77, 0, 6, 8, 35, 7, 22, 21] → [77, 0, 18, 24, 35, 7, 66, 21]
[81, 23, 89, 6, 9, 2, 1, 5, 55] → [81, 23, 89, 18, 9, 6, 1, 5, 55]
[71, 75, 8, 1, 99, 6, 4] → [71, 75, 24, 1, 99, 18, 12]
[6, 3, 16, 53, 20, 47, 69, 5, 33, 0]→ [18, 3, 48, 53, 60, 47, 69, 5, 33, 0]

231

𝜇 ℒ ID Description, Program, & Examples

0.215 21 c166 unique elements in ascending order by the sum of their digits

(𝜆 x (sort (𝜆 y (+ (% y 10) (/ y 10))) (unique x)))

[43, 20, 1, 20, 17, 55] → [1, 20, 43, 17, 55]
[92, 24, 11, 25, 21, 53, 25, 21] → [11, 21, 24, 25, 53, 92]
[86, 7, 63, 81, 9, 97, 41, 86, 3] → [3, 41, 7, 63, 81, 9, 86, 97]
[70, 70, 50, 70, 8, 50, 8, 50, 8, 8]→ [50, 70, 8]
[58, 58, 58, 82, 58, 82, 58] → [82, 58]

0.209 20 c084 remove all but element 7

(𝜆 x (if (> 7 (length x)) empty (singleton (nth 7 x))))

[2, 42] → []
[90, 8, 5, 34, 79, 65, 8, 48, 79, 9]→ [8]
[94, 0, 58, 62, 7, 3, 1, 55, 88] → [1]
[5, 5] → []
[85, 18, 85, 91, 91, 18, 91] → [91]

0.2 46 c249 use 0s to delimit sublists; give element 1 of each sublist

(𝜆 x (map first (reverse (fold (𝜆 y (𝜆 z (if (== z 0) (cons empty y) (cons (append (first y)
z) (drop 1 y))))) (singleton empty) x))))
[64, 0, 50, 1, 50, 1, 0, 1, 64] → [64, 50, 1]
[8, 0, 4, 68, 68, 78, 0, 68, 25, 68] → [8, 4, 68]
[94, 9, 3, 5, 5, 0, 5, 0, 95] → [94, 5, 95]
[2, 3, 67, 0, 44, 0, 6, 91, 76] → [2, 44, 6]
[42, 37, 80, 0, 47, 13, 80, 0, 80, 42]→ [42, 47, 80]

0.199 18 c118 left-rotate by N elements, N = last element

(𝜆 x (concat (drop (last x) x) (take (last x) x)))

[24, 8, 57, 44, 4] → [4, 24, 8, 57, 44]
[97, 28, 30, 5, 48, 7, 2, 76, 9, 1]→ [28, 30, 5, 48, 7, 2, 76, 9, 1, 97]
[18, 96, 25, 71, 99, 1] → [96, 25, 71, 99, 1, 18]
[39, 85, 2] → [2, 39, 85]
[5, 6, 22, 44, 90, 11, 3] → [44, 90, 11, 3, 5, 6, 22]

0.199 19 c152 replace each element with the product of its digits

(𝜆 x (map (𝜆 y (* (/ y 10) (% y 10))) x))

[37, 98, 4, 19, 82] → [21, 72, 0, 9, 16]
[87, 5, 77, 7, 54, 67, 8]→ [56, 0, 49, 0, 20, 42, 0]
[59, 47, 46] → [45, 28, 24]
[65, 25] → [30, 10]
[88] → [64]

0.197 32 c237 cumulative sum of unique elements

(𝜆 x (fold (𝜆 y (𝜆 z (append y (+ (last y) z)))) (take 1 (unique x)) (drop 1 (unique x))))

[14, 1, 3, 2, 14, 3] → [14, 15, 18, 20]
[7, 15, 2, 1, 0, 20, 20, 0, 4] → [7, 22, 24, 25, 25, 45, 49]
[1, 4, 1, 7, 0, 3, 2, 0] → [1, 5, 12, 12, 15, 17]
[0, 7, 4, 3, 8, 16, 16, 6, 2, 0]→ [0, 7, 11, 14, 22, 38, 44, 46]
[6, 7, 8, 5, 7, 9, 7] → [6, 13, 21, 26, 35]

0.196 8 c243 number of odd elements

(𝜆 x (singleton (count is_odd x)))

[6, 92, 34, 20, 69, 34, 0] → [1]
[19, 5, 4, 33, 17, 3, 19, 45, 93, 7]→ [9]
[24, 21, 15, 94, 32, 47, 2, 3] → [4]
[2, 25, 18, 8, 46, 29, 38, 99] → [3]
[75, 8, 55, 5, 42, 62, 67, 89, 43] → [6]

232

𝜇 ℒ ID Description, Program, & Examples

0.194 21 c188 replace each element with 1 if it is divisible by 3, else 0

(𝜆 x (map (𝜆 y (if (== (% y 3) 0) 1 0)) x))

[84, 9, 10, 11, 4] → [1, 1, 0, 0, 0]
[79, 3, 48, 13, 53, 41, 22, 2, 5]→ [0, 1, 1, 0, 0, 0, 0, 0, 0]
[95, 28, 86, 2, 21, 6, 40, 55] → [0, 0, 0, 0, 1, 1, 0, 0]
[90, 60] → [1, 1]
[38, 51, 9] → [0, 1, 1]

0.192 14 c139 remove all occurrences of the smallest and largest elements

(𝜆 x (cut_vals (max x) (cut_vals (min x) x)))

[28, 97, 22, 97, 22] → [28]
[0, 85, 96, 30] → [85, 30]
[20, 45, 76, 66, 92, 52, 7, 8] → [20, 45, 76, 66, 52, 8]
[0, 4, 38, 1, 88, 88, 62, 2, 81, 87]→ [4, 38, 1, 62, 2, 81, 87]
[14, 13, 91, 43, 13, 17] → [14, 43, 17]

0.189 28 c036 swap elements 2 and 3 if element 2 > element 3, else swap elements 1 and 4

(𝜆 x (if (> (second x) (third x)) (swap 2 3 x) (swap 1 4 x)))

[1, 4, 0, 4] → [1, 0, 4, 4]
[6, 0, 8, 2, 5, 2, 1, 7, 3, 4]→ [2, 0, 8, 6, 5, 2, 1, 7, 3, 4]
[9, 6, 9, 6, 9, 6] → [6, 6, 9, 9, 9, 6]
[5, 8, 5, 8, 3, 6, 1] → [5, 5, 8, 8, 3, 6, 1]
[0, 4, 1, 9, 7] → [0, 1, 4, 9, 7]

0.186 28 c201 elements > element 1, followed by elements < element 1

(𝜆 x (concat (filter (𝜆 y (< (first x) y)) x) (filter (𝜆 z (> (first x) z)) x)))

[9, 0, 73, 25, 4] → [73, 25, 0, 4]
[57, 62, 34, 54, 3, 6, 75, 8, 91, 99]→ [62, 75, 91, 99, 34, 54, 3, 6, 8]
[51, 20, 95, 39, 52, 53, 78, 2] → [95, 52, 53, 78, 20, 39, 2]
[40] → []
[43, 41, 22, 48, 77, 82, 18] → [48, 77, 82, 41, 22, 18]

0.182 11 c217 elements in ascending order by ones digits

(𝜆 x (sort (𝜆 y (% y 10)) x))

[34, 33, 80, 4, 79] → [80, 33, 34, 4, 79]
[36, 72, 45, 67, 50, 90] → [50, 90, 72, 45, 36, 67]
[66, 52, 15, 32] → [52, 32, 15, 66]
[83, 30, 28, 38, 21, 0, 5] → [30, 0, 21, 83, 5, 28, 38]
[63, 42, 1, 69, 61, 75, 46]→ [1, 61, 42, 63, 75, 46, 69]

0.178 14 c005 remove all but element N + 1, N = element 1

(𝜆 x (singleton (nth (first x) (drop 1 x))))

[2, 1, 9, 6, 7, 0, 4, 5, 3] → [9]
[7, 2, 1, 8, 0, 6, 3, 5, 9, 4]→ [5]
[5, 1, 7, 6, 9, 8, 2, 0, 3, 4]→ [8]
[9, 1, 6, 4, 7, 5, 3, 8, 2, 0]→ [0]
[4, 1, 9, 6, 3, 2, 5, 0, 8, 7]→ [3]

0.178 21 c209 elements in ascending order; insert sum of smallest and largest elements at index 3

(𝜆 x (insert (+ (max x) (min x)) 3 (sort (𝜆 y y) x)))

[34, 2, 3, 96, 64] → [2, 3, 98, 34, 64, 96]
[87, 76, 1, 38, 85, 83]→ [1, 38, 88, 76, 83, 85, 87]
[9, 67, 94, 5] → [5, 9, 99, 67, 94]
[39, 86, 23, 8, 7, 31] → [7, 8, 93, 23, 31, 39, 86]
[25, 72, 49] → [25, 49, 97, 72]

233

𝜇 ℒ ID Description, Program, & Examples

0.174 12 c063 remove the first N + 1 elements, N = element 1

(𝜆 x (drop (first x) (drop 1 x)))

[2, 6, 2, 6, 6, 6] → [6, 6, 6]
[4, 1, 1, 4, 1, 1, 3] → [1, 3]
[3, 3, 3, 3, 3, 3, 3, 3, 3, 3]→ [3, 3, 3, 3, 3, 3]
[1, 7, 9, 9, 8, 4, 1, 7, 8] → [9, 9, 8, 4, 1, 7, 8]
[0, 3, 9, 4, 6, 6, 7, 8, 2] → [3, 9, 4, 6, 6, 7, 8, 2]

0.161 16 c141 replace element M + 2 with N, M = element 1, N = element 2; remove elements 1 and 2

(𝜆 x (replace (first x) (second x) (drop 2 x)))

[4, 3, 12, 6, 67, 1, 9] → [12, 6, 67, 3, 9]
[3, 1, 2, 10, 90, 6, 0, 76] → [2, 10, 1, 6, 0, 76]
[5, 7, 33, 0, 71, 9, 78, 4, 2, 66] → [33, 0, 71, 9, 7, 4, 2, 66]
[1, 0, 1, 39, 49, 14, 90, 57, 0, 99]→ [0, 39, 49, 14, 90, 57, 0, 99]
[2, 4, 59, 62, 5, 6, 36, 45, 64] → [59, 4, 5, 6, 36, 45, 64]

0.155 28 c089 swap elements 2 and 3 if element 2 > element 3, else swap elements 1 and 4

(𝜆 x (if (> (second x) (third x)) (swap 2 3 x) (swap 1 4 x)))

[90, 7, 14, 59, 53, 24, 25] → [59, 7, 14, 90, 53, 24, 25]
[28, 99, 6, 43, 41, 28] → [28, 6, 99, 43, 41, 28]
[96, 8, 51, 44, 20] → [44, 8, 51, 96, 20]
[58, 65, 32, 63] → [58, 32, 65, 63]
[78, 97, 77, 93, 64, 3, 38, 18, 0, 24]→ [78, 77, 97, 93, 64, 3, 38, 18, 0, 24]

0.148 14 c124 element M, M = element N, N = element 1

(𝜆 x (singleton (nth (nth (first x) x) x)))

[2, 5, 0, 82, 9] → [9]
[4, 93, 98, 3, 1, 96] → [98]
[3, 27, 5, 2, 8, 7, 97, 84, 42] → [8]
[8, 25, 16, 35, 6, 1, 49, 3, 2, 55]→ [16]
[7, 61, 0, 56, 8, 92, 4, 2] → [56]

0.141 11 c216 elements in ascending order by tens digits

(𝜆 x (sort (𝜆 y (/ y 10)) x))

[77, 74, 26, 9, 31] → [9, 26, 31, 77, 74]
[54, 86, 4, 66, 25, 13, 84]→ [4, 13, 25, 54, 66, 86, 84]
[91, 20, 3, 82] → [3, 20, 82, 91]
[62, 32, 78, 53, 42, 8, 6] → [8, 6, 32, 42, 53, 62, 78]
[22, 38, 58, 30, 92, 14] → [14, 22, 38, 30, 58, 92]

0.14 21 c143 replace every occurrence of the largest element with the smallest element

(𝜆 x (map (𝜆 y (if (== y (max x)) (min x) y)) x))

[9, 0, 49, 49, 3] → [9, 0, 0, 0, 3]
[8, 82, 71, 25, 24, 31, 90, 34, 69, 6]→ [8, 82, 71, 25, 24, 31, 6, 34, 69, 6]
[9, 83, 0, 56, 18, 48, 61, 5, 12] → [9, 0, 0, 56, 18, 48, 61, 5, 12]
[74, 8, 2, 74, 22, 4] → [2, 8, 2, 2, 22, 4]
[52, 44, 16, 1, 6, 5, 52, 23] → [1, 44, 16, 1, 6, 5, 1, 23]

0.139 16 c215 replace element M + 1 with the length of the input, M = element 1; drop element 1

(𝜆 x (replace (first x) (length x) (drop 1 x)))

[3, 59, 55, 17, 3] → [59, 55, 5, 3]
[8, 4, 0, 43, 95, 70, 1, 34, 0, 4]→ [4, 0, 43, 95, 70, 1, 34, 10, 4]
[5, 74, 35, 35, 36, 78, 36, 35] → [74, 35, 35, 36, 8, 36, 35]
[5, 31, 60, 84, 7, 89, 96] → [31, 60, 84, 7, 7, 96]
[6, 25, 8, 72, 79, 27, 24, 2, 94] → [25, 8, 72, 79, 27, 9, 2, 94]

234

𝜇 ℒ ID Description, Program, & Examples

0.136 37 c144 replace every occurrence of the largest or smallest element with their absolute difference

(𝜆 x (map (𝜆 y (if (or (== y (max x)) (== y (min x))) (- (max x) (min x)) y)) x))

[60, 87, 71, 94, 35]→ [60, 87, 71, 59, 59]
[11, 90, 4, 16] → [11, 86, 86, 16]
[14, 52, 5] → [14, 47, 47]
[23, 77] → [54, 54]
[22] → [0]

0.129 15 c128 elements in ascending order after removing elements 1, 2, and 5

(𝜆 x (sort (𝜆 y y) (cut_idx 3 (drop 2 x))))

[14, 46, 41, 44, 85, 5] → [5, 41, 44]
[34, 74, 96, 40, 9, 7, 58, 2] → [2, 7, 40, 58, 96]
[69, 8, 38, 91, 83, 54, 10, 17, 51]→ [10, 17, 38, 51, 54, 91]
[3, 1, 28, 0, 6, 93, 90, 9, 56, 45] → [0, 9, 28, 45, 56, 90, 93]
[26, 49, 8, 4, 21, 16, 63] → [4, 8, 16, 63]

0.127 8 c208 keep only the last N elements, where N is the last element

(𝜆 x (takelast (last x) x))

[3, 1, 5, 35, 65, 7, 84, 4] → [65, 7, 84, 4]
[28, 69, 5, 58, 51, 66, 16, 9, 7] → [5, 58, 51, 66, 16, 9, 7]
[23, 9, 22, 0, 76, 3, 5, 75, 2, 1] → [1]
[2, 24, 92, 14, 95, 54, 79, 42, 71, 8]→ [92, 14, 95, 54, 79, 42, 71, 8]
[94, 8, 68, 86, 7, 95, 56, 0, 6] → [86, 7, 95, 56, 0, 6]

0.124 28 c035 swap elements 1 and 4 if element 2 = element 3, else swap elements 2 and 3

(𝜆 x (if (== (second x) (third x)) (swap 1 4 x) (swap 2 3 x)))

[0, 5, 0, 0] → [0, 0, 5, 0]
[7, 1, 7, 7, 1, 7, 1] → [7, 7, 1, 7, 1, 7, 1]
[3, 3, 3, 2, 2, 6] → [2, 3, 3, 3, 2, 6]
[9, 9, 8, 9, 8] → [9, 8, 9, 9, 8]
[5, 5, 4, 5, 6, 6, 4, 4, 4, 6]→ [5, 4, 5, 5, 6, 6, 4, 4, 4, 6]

0.118 12 c214 remove elements 1 and N+1, where N is element 1

(𝜆 x (cut_idx (first x) (drop 1 x)))

[4, 47, 54, 54, 4, 4] → [47, 54, 54, 4]
[7, 6, 30, 64, 8, 41, 41, 36, 56] → [6, 30, 64, 8, 41, 41, 56]
[2, 7, 23, 63, 63, 23, 93, 78] → [7, 63, 63, 23, 93, 78]
[3, 3, 21, 32, 21, 21, 98] → [3, 21, 21, 21, 98]
[9, 27, 19, 1, 64, 61, 61, 67, 27, 65]→ [27, 19, 1, 64, 61, 61, 67, 27]

0.116 12 c130 elements 2 through N + 1, N = element 1

(𝜆 x (take (first x) (drop 1 x)))

[5, 0, 24, 4, 41, 18, 9] → [0, 24, 4, 41, 18]
[1, 75, 48, 90, 5, 9, 4, 21, 59] → [75]
[0, 96, 6, 62, 83, 96, 43, 25, 52, 43]→ []
[3, 81, 0, 8, 87, 62, 6, 10] → [81, 0, 8]
[7, 9, 6, 4, 15, 45, 88, 83, 26, 92] → [9, 6, 4, 15, 45, 88, 83]

0.115 24 c159 element N counts the number of occurrences of N, up to the largest element

(𝜆 x (map (𝜆 y (count (𝜆 z (== y z)) x)) (range 1 1 (max x))))

[8, 8, 8, 6, 5, 5, 5, 6] → [0, 0, 0, 0, 3, 2, 0, 3]
[3, 4, 3, 5, 4, 4, 5, 5, 4, 3]→ [0, 0, 3, 4, 3]
[7, 6, 6, 6, 6, 2, 2, 7, 6] → [0, 2, 0, 0, 0, 5, 2]
[4, 4, 7, 7, 9, 4, 9, 2, 2] → [0, 2, 0, 3, 0, 0, 2, 0, 2]
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1]→ [10]

235

𝜇 ℒ ID Description, Program, & Examples

0.114 19 c205 product of elements divisible by 4

(𝜆 x (singleton (product (filter (𝜆 y (== (% y 4) 0)) x))))

[4, 1, 9, 20, 3, 11, 70] → [80]
[99, 46, 7, 5, 2, 8, 5, 12] → [96]
[15, 73, 98, 8, 53, 1, 95, 9, 4] → [32]
[67, 19, 23, 7, 2, 12, 8, 23, 97, 6]→ [96]
[83, 37, 16, 21, 0, 6, 2, 87, 7] → [0]

0.112 30 c076 the maximum, last element, length, first element, and minimum, in that order

(𝜆 x (cons (max x) (cons (last x) (cons (length x) (cons (first x) (singleton (min x)))))))

[5, 7, 9, 4] → [9, 4, 4, 5, 4]
[0, 6, 1, 9, 7, 8, 4, 2, 5, 3]→ [9, 3, 10, 0, 0]
[6] → [6, 6, 1, 6, 6]
[8, 2] → [8, 2, 2, 8, 2]
[3, 5, 4, 0, 8, 7, 1] → [8, 1, 7, 3, 0]

0.107 48 c250 use 0s to delimit sublists; concatenate reverse of each sublist

(𝜆 x (flatten (map reverse (reverse (fold (𝜆 y (𝜆 z (if (== z 0) (cons empty y) (cons (append
(first y) z) (drop 1 y))))) (singleton empty) x)))))
[38, 0, 38, 3, 60, 60, 0, 3, 38] → [38, 60, 60, 3, 38, 38, 3]
[4, 8, 0, 77, 0, 25, 66, 77, 40, 66]→ [8, 4, 77, 66, 40, 77, 66, 25]
[7, 27, 0, 8, 5, 0, 86, 24, 4, 4] → [27, 7, 5, 8, 4, 4, 24, 86]
[6, 14, 75, 0, 1, 75, 75, 0, 0] → [75, 14, 6, 75, 75, 1]
[2, 0, 62, 80, 54, 49, 0, 6, 4] → [2, 49, 54, 80, 62, 4, 6]

0.103 13 c186 keep only elements greater than element 1

(𝜆 x (filter (𝜆 y (> y (first x))) x))

[6, 71, 97, 98, 0, 64, 60, 3, 0] → [71, 97, 98, 64, 60]
[79, 7, 32, 2, 8, 86, 93, 51, 95, 5] → [86, 93, 95]
[31, 30, 53, 74, 9, 12, 12, 5, 31, 31] → [53, 74]
[77, 20, 26, 99, 12, 81, 27, 90, 90, 77]→ [99, 81, 90, 90]
[72, 17, 4, 50, 80, 17, 37, 29, 57] → [80]

0.098 25 c242 take the largest unique element, append the second largest unique element, prepend the third largest
unique element, append the fourth largest unique element, and so on
(𝜆 x (fold (𝜆 y (𝜆 z (append (reverse y) z))) empty (reverse (unique (sort (𝜆 u u) x)))))

[43, 43, 43, 17, 17, 4, 17, 17] → [17, 43, 4]
[32, 81, 53, 32, 1, 32, 81, 53, 81, 1]→ [32, 81, 53, 1]
[66, 0, 6, 66, 31, 66, 28, 28] → [6, 31, 66, 28, 0]
[60, 92, 9, 18, 35, 9, 10, 60, 10, 92]→ [10, 35, 92, 60, 18, 9]
[51, 46, 74, 46, 75, 48, 89, 89, 51] → [48, 74, 89, 75, 51, 46]

0.091 11 c160 replace each element, M, with 99 - M

(𝜆 x (map (𝜆 y (- 99 y)) x))

[55, 82, 57, 4, 59, 6] → [44, 17, 42, 95, 40, 93]
[1, 13, 34, 6, 36, 79, 21, 11, 64, 46]→ [98, 86, 65, 93, 63, 20, 78, 88, 35, 53]
[32, 70, 51, 41, 5, 69, 28] → [67, 29, 48, 58, 94, 30, 71]
[9, 72, 7, 75, 74, 1, 79, 84, 2] → [90, 27, 92, 24, 25, 98, 20, 15, 97]
[8, 66, 3, 43, 2, 73, 48, 74] → [91, 33, 96, 56, 97, 26, 51, 25]

0.073 15 c167 keep only elements divisible by 3

(𝜆 x (filter (𝜆 y (== (% y 3) 0)) x))

[18, 78, 3, 5, 62, 8] → [18, 78, 3]
[27, 70, 0, 21, 74, 33, 87, 12, 22] → [27, 0, 21, 33, 87, 12]
[31, 91, 84, 30, 38, 10, 66, 0, 98, 94]→ [84, 30, 66, 0]
[90, 50, 3, 1, 99, 0, 93] → [90, 3, 99, 0, 93]
[45, 8, 2, 69, 39, 9, 44, 4] → [45, 69, 39, 9]

236

𝜇 ℒ ID Description, Program, & Examples

0.068 6 c202 the indices of every even number

(𝜆 x (find is_even x))

[31, 98, 55, 14, 50] → [2, 4, 5]
[71, 7, 23, 20, 13, 66, 26, 42, 52]→ [4, 6, 7, 8, 9]
[91, 78, 5, 46, 15, 33, 0, 62] → [2, 4, 7, 8]
[73, 41, 58, 24] → [3, 4]
[90, 60, 25] → [1, 2]

0.056 16 c129 elements M + 2 through N + 2, M = element 1, N = element 2

(𝜆 x (slice (first x) (second x) (drop 2 x)))

[2, 3, 75, 17, 8, 6] → [17, 8]
[1, 4, 99, 5, 4, 14, 73, 28] → [99, 5, 4, 14]
[4, 6, 37, 8, 1, 31, 7, 69, 62, 67]→ [31, 7, 69]
[4, 5, 20, 66, 61, 19, 16] → [19, 16]
[6, 6, 70, 27, 86, 99, 7, 30, 66] → [30]

0.048 10 c221 sum of even elements

(𝜆 x (singleton (sum (filter is_even x))))

[46, 91, 4, 9, 1, 67, 5] → [50]
[65, 44, 3, 1, 91, 7, 41, 43, 20] → [64]
[55, 26, 34, 95, 19, 6, 0, 79, 8, 53]→ [74]
[81, 21, 0, 32, 16, 4, 2, 28, 33] → [82]
[6, 13, 7, 10, 47, 75, 80, 93] → [96]

0.045 13 c131 keep only elements whose tens digit is even

(𝜆 x (filter (𝜆 y (is_even (/ y 10))) x))

[68, 93, 10, 24, 5] → [68, 24, 5]
[54, 99, 84, 58] → [84]
[3, 38, 7, 16, 78, 51, 41, 12, 67, 77]→ [3, 7, 41, 67]
[95, 37, 73, 97, 97, 56, 97, 97] → []
[94, 0, 9, 5, 6, 33, 4, 59, 54] → [0, 9, 5, 6, 4]

0.045 21 c180 take the smallest element, append the second smallest, prepend the third smallest, append the fourth
smallest, and so on
(𝜆 x (fold (𝜆 y (𝜆 z (append (reverse y) z))) empty (sort (𝜆 u u) x)))

[43, 6, 18, 33, 8, 38] → [38, 18, 6, 8, 33, 43]
[11, 7, 56, 84, 4, 60, 5] → [60, 11, 5, 4, 7, 56, 84]
[1, 67, 23, 63, 59, 36, 45, 21, 5] → [63, 45, 23, 5, 1, 21, 36, 59, 67]
[93, 3, 48, 34, 21, 83, 14, 66, 65, 80]→ [83, 66, 48, 21, 3, 14, 34, 65, 80, 93]
[92, 94, 57, 2, 98, 89, 13, 28] → [94, 89, 28, 2, 13, 57, 92, 98]

0.042 16 c015 elements M + 2 through N + 2, M = element 1, N = element 2

(𝜆 x (slice (first x) (second x) (drop 2 x)))

[3, 4, 5, 5, 4, 3, 3] → [4, 3]
[1, 3, 9, 2, 0, 5, 7, 5, 7, 1]→ [9, 2, 0]
[4, 5, 6, 6, 4, 6, 9, 9] → [6, 9]
[1, 1, 3, 2, 3, 4, 5, 6, 5, 1]→ [3]
[1, 5, 8, 3, 6, 2, 4, 8, 0] → [8, 3, 6, 2, 4]

0.04 23 c179 take the largest element, append the second largest, prepend the third largest, append the fourth largest,
and so on
(𝜆 x (fold (𝜆 y (𝜆 z (append (reverse y) z))) empty (reverse (sort (𝜆 u u) x))))

[80, 68, 56, 38, 97, 92] → [56, 80, 97, 92, 68, 38]
[3, 81, 25, 8, 5, 7, 41, 75, 39] → [5, 8, 39, 75, 81, 41, 25, 7, 3]
[46, 85, 95, 0, 38, 4, 66, 35] → [4, 38, 66, 95, 85, 46, 35, 0]
[53, 27, 30, 13, 1, 18, 55] → [13, 27, 53, 55, 30, 18, 1]
[11, 4, 36, 71, 19, 2, 90, 6, 10, 86]→ [4, 10, 19, 71, 90, 86, 36, 11, 6, 2]

237

𝜇 ℒ ID Description, Program, & Examples

0.04 14 c226 remove first M and last N elements, M = element 1, N = last element

(𝜆 x (drop (first x) (droplast (last x) x)))

[1, 15, 15, 1, 15, 1, 1] → [15, 15, 1, 15, 1]
[6, 67, 67, 67, 6, 67, 1, 1] → [1]
[5, 64, 64, 5, 83, 83, 83, 83, 8, 5]→ []
[1, 14, 61, 49, 2, 12, 98, 4, 4] → [14, 61, 49, 2]
[1, 5, 3, 96, 37, 35, 68, 5, 23, 0] → [5, 3, 96, 37, 35, 68, 5, 23, 0]

0.034 12 c134 remove elements M through N, M = element 1, N = element 2

(𝜆 x (cut_slice (first x) (second x) x))

[3, 4, 9, 6, 91] → [3, 4, 91]
[2, 9, 3, 29, 19, 61, 23, 59, 66, 76]→ [2, 76]
[3, 5, 31, 85, 37, 9, 4] → [3, 5, 9, 4]
[1, 8, 0, 65, 95, 28, 3, 7] → []
[2, 4, 0, 7] → [2]

0.03 15 c164 replace each element, M, with M / 4 + 5

(𝜆 x (map (𝜆 y (+ (/ y 4) 5)) x))

[22, 14, 26, 39, 26, 13] → [10, 8, 11, 14, 11, 8]
[6, 50, 18, 72, 7, 84, 94, 0, 46, 8]→ [6, 17, 9, 23, 6, 26, 28, 5, 16, 7]
[31] → [12]
[55, 3, 92, 85, 63, 58, 33, 67, 48] → [18, 5, 28, 26, 20, 19, 13, 21, 17]
[8, 2, 42, 59, 95, 97, 3] → [7, 5, 15, 19, 28, 29, 5]

0.02 27 c178 keep only elements followed by an even number

(𝜆 x (map first (filter (𝜆 y (is_even (second y))) (zip (droplast 1 x) (drop 1 x)))))

[27, 4, 9, 71, 45, 69] → [27]
[10, 68, 80, 5, 29, 23, 9, 33, 69] → [10, 68]
[73, 32, 70, 0, 22, 2, 46, 8, 7, 92]→ [73, 32, 70, 0, 22, 2, 46, 7]
[19, 81, 1, 53, 85, 3, 97] → []
[40, 2, 91, 28, 61, 0, 55, 4] → [40, 91, 61, 55]

0.018 17 c113 keep only elements whose ones digit is greater than element 1

(𝜆 x (filter (𝜆 y (> (first x) (% y 10))) x))

[3, 91, 59, 91, 60, 6, 44, 2] → [91, 91, 60, 2]
[7, 35, 37, 74, 73, 22, 85, 8, 68, 7]→ [35, 74, 73, 22, 85]
[7, 38, 1, 29, 40, 48, 45, 81] → [1, 40, 45, 81]
[2, 93, 68, 36, 41, 8, 27, 20, 8, 50]→ [41, 20, 50]
[4, 82, 5, 52, 83, 7, 5, 4, 9] → [82, 52, 83]

0.013 31 c206 keep only elements whose value is between the first two elements

(𝜆 x (filter (𝜆 y (and (> (max (take 2 x)) y) (> y (min (take 2 x))))) x))

[43, 3, 80, 40, 29, 31] → [40, 29, 31]
[1, 63, 2, 7, 48, 9, 97, 4] → [2, 7, 48, 9, 4]
[39, 80, 95, 9, 44, 77, 2, 33, 75, 6]→ [44, 77, 75]
[6, 90, 25, 9, 18, 0, 7] → [25, 9, 18, 7]
[87, 5, 71, 7, 3, 19, 8, 22, 56] → [71, 7, 19, 8, 22, 56]

0.01 14 c210 unique elements with last element inserted at index M, where M is element 1

(𝜆 x (insert (last x) (first x) (unique x)))

[2, 9, 57, 6, 9, 6] → [2, 6, 9, 57, 6]
[4, 0, 50, 4, 19, 34, 50, 34, 4, 19]→ [4, 0, 50, 19, 19, 34]
[8, 79, 23, 60, 74, 49, 71, 0, 76] → [8, 79, 23, 60, 74, 49, 71, 76, 0, 76]
[2, 99, 87, 2, 87, 99, 87] → [2, 87, 99, 87]
[7, 65, 3, 68, 73, 66, 9, 5] → [7, 65, 3, 68, 73, 66, 5, 9, 5]

238

𝜇 ℒ ID Description, Program, & Examples

0 18 c158 replace each element with 1 if element N equals N, else 0

(𝜆 x (mapi (𝜆 y (𝜆 z (if (== z y) 1 0))) x))

[1, 45, 3, 4, 23, 55] → [1, 0, 1, 1, 0, 0]
[4, 68, 3, 68, 24, 8, 7, 8] → [0, 0, 1, 0, 0, 0, 1, 1]
[84, 2, 29, 7, 35, 2, 4, 8, 9, 31]→ [0, 1, 0, 0, 0, 0, 0, 1, 1, 0]
[9, 3, 8, 6, 7, 5, 2] → [0, 0, 0, 0, 0, 0, 0]
[16, 20, 67, 4, 63, 1, 7, 6, 9, 4]→ [0, 0, 0, 1, 0, 0, 1, 0, 1, 0]

0 14 c183 list the index minus 1 of elements 2 and following equal to element 1

(𝜆 x (find (== (first x)) (drop 1 x)))

[3, 4, 3, 3, 3, 9, 5, 8] → [2, 3, 4]
[8, 7, 2, 1, 1, 2, 8, 9, 6] → [6]
[2, 2, 2, 2, 5, 2, 5, 4, 4, 5] → [1, 2, 3, 5]
[6, 3, 6, 6, 9, 9, 3, 6, 6, 6] → [2, 3, 7, 8, 9]
[2, 12, 2, 49, 8, 2, 65, 83, 36]→ [2, 5]

239

240

References

Abelson, H., Sussman, G. J., & Sussman, J. (1996). Structure and interpretation of computer
programs. MIT Press.

Abend, O., Kwiatkowski, T., Smith, N. J., Goldwater, S., & Steedman, M. (2017). Boot-
strapping language acquisition. Cognition, 164, 116–143.

Akiba, T., Imajo, K., Iwami, H., Iwata, Y., Kataoka, T., Takahashi, N., Moskal, M., &
Swamy, N. (2013). Calibrating research in program synthesis using 72,000 hours of
programmer time (tech. rep.). Microsoft Research.

Alur, R., Bodik, R., Juniwal, G., Martin, M. M., Raghothaman, M., Seshia, S. A., Singh,
R., Solar-Lezama, A., Torlak, E., & Udupa, A. (2013). Syntax-guided synthesis. 2013
Formal Methods in Computer-Aided Design, 1–8.

Amalric, M., Wang, L., Pica, P., Figueira, S., Sigman, M., & Dehaene, S. (2017). The lan-
guage of geometry: Fast comprehension of geometrical primitives and rules in human
adults and preschoolers. PLoS Computational Biology. https ://doi .org/10 .1371/
journal.pcbi.1005273

Andreessen, M. (2011). Why software is eating the world. Wall Street Journal, 20 (2011), C2.
Ashcraft, M. H. (1982). The development of mental arithmetic: A chronometric approach.

Developmental Review, 2 (3), 213–236.
Ashcraft, M. H. (1987). Children’s knowledge of simple arithmetic: A developmental model

and simulation. In J. Bisanz, C. Brainerd, & R. Kail (Eds.), Formal methods in
developmental psychology (pp. 302–338). Springer.

Baader, F., & Snyder, W. (2001). Unification theory. Handbook of automated reasoning
(pp. 447–533). Gulf Professional.

Baader, F., & Nipkow, T. (1999). Term rewriting and all that. Cambridge University Press.
Balog, M., Gaunt, A. L., Brockschmidt, M., Nowozin, S., & Tarlow, D. (2017). Deepcoder:

Learning to write programs. Procedeedings of the Fifth International Conference on
Learning Representations.

Barendregt, H. P. et al. (1984). The lambda calculus (Vol. 3). North-Holland Amsterdam.
Barner, D. (2017). Language, procedures, and the non-perceptual origin of number word

meanings. Journal of Child Language, 44 (3), 553–590.
Barner, D., & Baron, A. S. (2016). Core knowledge and conceptual change. Oxford University

Press.
Baroody, A. J. (1984). The case of felicia: A young child’s strategies for reducing memory

demand during mental addition. Cognition and Instruction, 1 (1), 109–116.
Baroody, A. J., & Gannon, K. E. (1984). The development of the commutativity principle

and economical addition strategies. Cognition and Instruction, 1 (3), 321–339.

241

https://doi.org/10.1371/journal.pcbi.1005273
https://doi.org/10.1371/journal.pcbi.1005273

Bartlett, F. (1958). Thinking: An experimental and social study. Basic Books.
Baum, E. B. (2004). What is thought? MIT Press.
Bezem, M., Klop, J. W., & de Vrijer, R. (Eds.). (2003). Term rewriting systems. Cambridge

University Press.
Biermann, A. W. (1978). The inference of regular lisp programs from examples. IEEE trans-

actions on Systems, Man, and Cybernetics, 8 (8), 585–600.
Block, N. (1987). Advertisement for a semantics for psychology. Midwest Studies in Philos-

ophy, 10 (1), 615–678. https://doi.org/10.1111/j.1475-4975.1987.tb00558.x
Block, N. (1997). Semantics, conceptual role. The Routledge Encylopedia of Philosophy.
Bloom, P., & Wynn, K. (1997). Linguistic cues in the acquisition of number words. Journal

of Child Language, 24 (3), 511–533.
Bongard, M. M. (1967). The problem of recogntion.
Boole, G. (1854). An investigation of the laws of thought: On which are founded the mathe-

matical theories of logic and probabilities. Dover Publications.
Bošnjak, M., Rocktäschel, T., Naradowsky, J., & Riedel, S. (2017). Programming with a

differentiable forth interpreter. International conference on machine learning, 547–
556.

Bratko, I. (2001). Prolog programming for artificial intelligence. Pearson education.
Briars, D., & Siegler, R. S. (1984). A featural analysis of preschoolers’ counting knowledge.

Developmental Psychology, 20 (4), 607–618.
Brodie, L. (2004). Thinking forth. Punchy Publishing.
Browne, C. B., Powley, E., Whitehouse, D., Lucas, S. M., Cowling, P. I., Rohlfshagen, P.,

Tavener, S., Perez, D., Samothrakis, S., & Colton, S. (2012). A survey of monte carlo
tree search methods. IEEE Transactions on Computational Intelligence and AI in
games, 4 (1), 1–43.

Bruner, J. S., Goodnow, J. J., & George, A. (1956). A study of thinking.
Bunel, R., Hausknecht, M., Devlin, J., Singh, R., & Kohli, P. (2018). Leveraging grammar and

reinforcement learning for neural program synthesis. arXiv preprint arXiv:1805.04276.
Burge, T. (2010). Steps toward origins of propositional thought. Disputatio, 4 (29), 1–29.
Calvo, P., & Symons, J. (2014). The architecture of cognition: Rethinking fodor and pylyshyn’s

systematicity challenge. MIT Press.
Carey, S. (1985). Conceptual change in childhood. MIT Press.
Carey, S. (2009). The origin of concepts. Oxford University Press.
Carey, S. (2015). Why theories of concepts should not ignore the problem of acquisition. In

E. Margolis & S. Laurence (Eds.), The conceptual mind: New directions in the study
of concepts. MIT Press.

Carey, S., & Bartlett, E. (1978). Acquiring a single new word.
Carey, S., & Spelke, E. (1994). Domain-specific knowledge and conceptual change. Map-

ping the mind: Domain specificity in cognition and culture (pp. 169–200). Cambridge
University Press.

Carpenter, B., Gelman, A., Hoffman, M. D., Lee, D., Goodrich, B., Betancourt, M., Brubaker,
M., Guo, J., Li, P., & Riddell, A. (2017). Stan: A probabilistic programming language.
Journal of statistical software, 76 (1).

242

https://doi.org/10.1111/j.1475-4975.1987.tb00558.x

Carpenter, T. P., & Moser, J. M. (1984). The acquisition of addition and subtraction concepts
in grades one through three. Journal for Research in Mathematics Education, 15 (3),
179–202.

Carpentier, A., & Valko, M. (2014). Extreme bandits. Advances in Neural Information Pro-
cessing Systems, 1089–1097.

Chase, W. G., & Simon, H. A. (1973). Perception in chess. Cognitive psychology, 4 (1), 55–81.
Chater, N., & Oaksford, M. (2013). Programs as causal models: Speculations on mental

programs and mental representation. Cognitive Science, 37 (6), 1171–1191.
Chater, N., & Vitányi, P. (2003). Simplicity: A unifying principle in cognitive science? Trends

in Cognitive Sciences, 7 (1), 19–22.
Chen, X., Liu, C., & Song, D. (2019). Execution-guided neural program synthesis. Interna-

tional Conference on Learning Representations.
Cheung, P., Rubenson, M., & Barner, D. (2017). To infinity and beyond: Children generalize

the successor function to all possible numbers years after learning to count. Cognitive
Psychology, 92, 22–36.

Cheyette, S., & Piantadosi, S. (2017). Knowledge transfer in a probabilistic language of
thought. Proceedings of the 39th Annual Conference of the Cognitive Science Society.

Childs, B. E., Brodeur, J. H., & Kocsis, L. (2008). Transpositions and move groups in monte
carlo tree search. 2008 IEEE Symposium On Computational Intelligence and Games,
389–395.

Chollet, F. (2019). On the measure of intelligence. arXiv preprint arXiv:1911.01547.
Chomsky, N. (1959). A review of bf skinner’s verbal behavior. Language, 35 (1), 26–58.
Chomsky, N., Keyser, S. J. et al. (1988). Language and problems of knowledge: The managua

lectures (Vol. 16). MIT press.
Chu, J., Cheung, P., Schneider, R. M., Sullivan, J., & Barner, D. (2020). Counting to infinity:

Does learning the syntax of the count list predict knowledge that numbers are infinite?
Chu, J., Gauthier, J., Levy, R., Tenenbaum, J., & Schulz, L. (2019). Query-guided visual

search. Proceedings of the 41st Annual Conference of the Cognitive Science Society.
Chu, J., & Schulz, L. (2020). Exploratory play, rational action, and efficient search [PsyArxiv

preprint: 10.31234/osf.io/9yra2]. Proceedings of the 42nd Annual Conference of the
Cognitive Science Society.

Church, A. (1932). A set of postulates for the foundation of logic. The Annals of Mathematics,
33 (2), 346. https://doi.org/10.2307/1968337

Cicirello, V. A., & Smith, S. F. (2005). The max k-armed bandit: A new model of explo-
ration applied to search heuristic selection. The Proceedings of the Twentieth National
Conference on Artificial Intelligence, 3, 1355–1361.

Cormen, T., Leiserson, C., Rivest, R., & Stein, C. (2009). Introduction to algorithms. MIT
Press.

Cropper, A., & Morel, R. (2020). Learning programs by learning from failures. arXiv preprint
arXiv:2005.02259.

Cropper, A., Morel, R., & Muggleton, S. H. (2019). Learning higher-order logic programs.
arXiv preprint arXiv:1907.10953.

Cropper, A., & Muggleton, S. H. (2015). Logical minimisation of meta-rules within meta-
interpretive learning. Inductive logic programming (pp. 62–75). Springer.

Cropper, A., & Muggleton, S. H. (2016). Metagol system.

243

https://doi.org/10.2307/1968337

Cropper, A., & Muggleton, S. H. (2019). Learning efficient logic programs. Machine Learning,
108 (7), 1063–1083.

Csikszentmihalyi, M. (1990). Flow: The psychology of happiness. Harper & Row.
Curry, H. B. (1930). Grundlagen der kombinatorischen logik. American Journal of Mathe-

matics, 52 (3), 509. https://doi.org/10.2307/2370619
Davidson, K., Eng, K., & Barner, D. (2012). Does learning to count involve a semantic

induction? Cognition, 123 (1), 162–173.
Dechter, E., Malmaud, J., Adams, R. P., & Tenenbaum, J. B. (2013). Bootstrap learning via

modular concept discovery. Proceedings of the 23rd International Joint Conference on
Artificial Intelligence, 1302–1309.

Depeweg, S., Rothkopf, C. A., & Jäkel, F. (2018). Solving bongard problems with a visual
language and pragmatic reasoning. arXiv preprint arXiv:1804.04452.

Devlin, J., Uesato, J., Bhupatiraju, S., Singh, R., Mohamed, A., & Kohli, P. (2017). Robust-
Fill: Neural program learning under noisy I/O. Proceedings of the 34th International
Conference on Machine Learning.

Dreyfus, H. L. (1992). What computers still can’t do: A critique of artificial reason. MIT
press.

Ellerman, M. (2020). linux-fullhistory: Full history of Linux created by Yoann Padioleau and
Rob Landley.

Ellis, K., Morales, L., Sablé-Meyer, M., Solar-Lezama, A., & Tenenbaum, J. (2018). Learning
libraries of subroutines for neurally–guided Bayesian program induction. Advances in
Neural Information Processing Systems, 7816–7826.

Ellis, K., Nye, M., Pu, Y., Sosa, F., Tenenbaum, J., & Solar-Lezama, A. (2019). Write,
execute, assess: Program synthesis with a repl. Advances in Neural Information Pro-
cessing Systems, 9165–9174.

Ellis, K., Solar-Lezama, A., & Tenenbaum, J. (2016). Sampling for bayesian program learn-
ing. Advances in Neural Information Processing Systems, 1297–1305.

Ellis, K., Wong, C., Nye, M., Sable-Meyer, M., Cary, L., Morales, L., Hewitt, L., Solar-
Lezama, A., & Tenenbaum, J. B. (2020). Dreamcoder: Growing generalizable, in-
terpretable knowledge with wake-sleep bayesian program learning. arXiv preprint
arXiv:2006.08381.

Erdogan, G., Yildirim, I., & Jacobs, R. A. (2015). From sensory signals to modality-independent
conceptual representations: A probabilistic language of thought approach. PLoS Com-
putational Biology. https://doi.org/10.1371/journal.pcbi.1004610

Ericsson, K. A. (2006). The influence of experience and deliberate practice on the devel-
opment of superior expert performance. The Cambridge handbook of expertise and
expert performance (pp. 683–704). Cambridge University Press. https://doi.org/10.
1017/cbo9780511816796.038

Fedorenko, E., Ivanova, A., Dhamala, R., & Bers, M. U. (2019). The language of program-
ming: A cognitive perspective. Trends in Cognitive Sciences, 23 (7), 525–528.

Feldman, J. (2000). Minimization of Boolean complexity in human concept learning. Nature,
407 (6804), 630–633.

Feldman, J. (2003). The simplicity principle in human concept learning. Current Directions
in Psychological Science, 12 (6), 227–232.

244

https://doi.org/10.2307/2370619
https://doi.org/10.1371/journal.pcbi.1004610
https://doi.org/10.1017/cbo9780511816796.038
https://doi.org/10.1017/cbo9780511816796.038

Feser, J. K., Brockschmidt, M., Gaunt, A. L., & Tarlow, D. (2017). Neural functional pro-
gramming.

Feser, J. K., Chaudhuri, S., & Dillig, I. (2015). Synthesizing data structure transformations
from input-output examples. ACM SIGPLAN Notices, 50 (6), 229–239.

Feyerabend, P. (1962). Knowledge without foundations. Oberlin College.
Field, H. H. (1977). Logic, meaning, and conceptual role. The Journal of Philosophy, 74 (7),

379–409.
Flener, P., & Schmid, U. (2008). An introduction to inductive programming. AI Review,

29 (1), 45–62.
Fodor, J. (1975). The Language of Thought. Harvard University Press.
Fodor, J., & Pylyshyn, Z. (1988). Connectionism and cognitive architecture: A critical anal-

ysis, connections and symbols. Cognition, 28, 3–71.
Fodor, J. A. (1980). On the impossibility of acquiring “more powerful” structures. In M.

Piattelli-Palmarini (Ed.), Language and learning: The debate between Jean Piaget
and Noam Chomsky (pp. 142–149). Harvard University Press.

Fodor, J. A. (1983). The modularity of mind. MIT press.
Fodor, J. A. (2008). Lot 2: The language of thought revisited. Oxford University Press on

Demand.
Fodor, J. A., & Lepore, E. (1992). Holism: A shopper’s guide. Blackwell.
Foundalis, H. E. (2006). Phaeaco: A cognitive architecture inspired by bongard’s problems.

(Doctoral dissertation). University of Indiana.
Fowler, M. (2010). Domain-specific languages. Pearson Education.
Fowler, M. (2018). Refactoring: Improving the design of existing code. Addison-Wesley Pro-

fessional.
Frank, M., & Goodman, N. (2012). Predicting pragmatic reasoning in language games. Sci-

ence, 336 (6084), 998.
Fuson, K. C. (1992). Research on whole number addition and subtraction. In D. A. Grouws

(Ed.), Handbook of research on mathematics teaching and learning (pp. 243–275).
Macmillan.

Fuson, K. C., Richards, J., & Briars, D. J. (1982). The acquisition and elaboration of the
number word sequence. In C. J. Brainerd (Ed.), Children’s logical and mathematical
cognition (pp. 33–92). Springer-Verlag.

Fuson, K. (1988). Children’s counting and concepts of number. Springer.
Gallistel, C. R. (2017). The neurobiological bases for the computational theory of mind.

Minds on language and thought: The status of cognitive science and its prospects.
Oxford University Press.

Gaunt, A. L., Brockschmidt, M., Singh, R., Kushman, N., Kohli, P., Taylor, J., & Tarlow, D.
(2016). Terpret: A probabilistic programming language for program induction. arXiv
preprint arXiv:1608.04428.

Gauthier, J., Levy, R. P., & Tenenbaum, J. B. (2019). A rational model of syntactic boot-
strapping. Proceedings of the 41st Annual Conference of the Cognitive Science Society.

Geary, D. C., & Burlingham-Dubree, M. (1989). External validation of the strategy choice
model for addition. Journal of Experimental Child Psychology, 47 (2), 175–192.

Gentner, D. (1983). Structure-mapping: A theoretical framework for analogy. Cognitive sci-
ence, 7 (2), 155–170.

245

Gerstenberg, T., & Tenenbaum, J. B. (2017). Intuitive theories. Oxford handbook of causal
reasoning, 515–548.

Gibbons, J. (2003). Origami programming. In J. Gibbons & O. de Moor (Eds.), The fun of
programming. Macmillan Education.

Gick, M. L., & Holyoak, K. J. (1980). Analogical problem solving. Cognitive Psychology,
12 (3), 306–355.

Gick, M. L., & Holyoak, K. J. (1983). Schema induction and analogical transfer. Cognitive
Psychology, 15 (1), 1–38.

Gigerenzer, G., & Murray, D. J. (1987). Cognition as intuitive statistics. Psychology Press.
Gleitman, L. R., Gleitman, H., & Shipley, E. F. (1977). The emergence of the child as

grammarian. In M. H. Appel & L. S. Goldberg (Eds.), Topics in cognitive development
(pp. 91–117). Springer.

Gold, E. M. (1967). Language identification in the limit. Information and control, 10 (5),
447–474.

Goldman, S. R., Mertz, D. L., & Pellegrino, J. W. (1989). Individual differences in extended
practice functions and solution strategies for basic addition facts. Journal of Educa-
tional Psychology, 81 (4), 481–496.

Goodman, N., Tenenbaum, J., Feldman, J., & Griffiths, T. (2008). A rational analysis of
rule-based concept learning. Cognitive Science, 32 (1), 108–154.

Goodman, N., Mansinghka, V., Roy, D. M., Bonawitz, K., & Tenenbaum, J. B. (2008).
Church: A language for generative models. In D. McAllester & P. Myllymaki (Eds.),
Proceedings of the 24th conference conference on uncertainty in artificial intelligence.

Goodman, N., Tenenbaum, J. B., & Gerstenberg, T. (2015). Concepts in a probabilistic
language of thought. In E. Margolis & S. Laurence (Eds.), The conceptual mind: New
directions in the study of concepts (pp. 623–654). MIT Press.

Goodman, N. D., & Frank, M. C. (2016). Pragmatic language interpretation as probabilistic
inference. Trends in Cognitive Sciences, 20, 818–829.

Goodman, N. D., & Lassiter, D. (2015). Probabilistic semantics and pragmatics: Uncertainty
in language and thought. In S. Lappin & C. Fox (Eds.), The handbook of contemporary
semantic theory (2nd). Wiley-Blackwell.

Goodman, N. D., Ullman, T. D., & Tenenbaum, J. B. (2011). Learning a theory of causality.
Psychological Review, 118 (1), 110–119.

Goodwin, G. P., & Johnson-Laird, P. N. (2013). The acquisition of boolean concepts. Trends
in cognitive sciences, 17 (3), 128–133.

Gopnik, A., & Meltzoff, A. (1997). Words, thoughts, and theories. MIT Press.
Gopnik, A. (1983). Conceptual and semantic change in scientists and children: Why there

are no semantic universals. Linguistics, 21 (1), 163–180.
Gopnik, A. (1996). The scientist as child. Philosophy of Science, 63 (4), 485–514.
Gopnik, A. (2012). Scientific thinking in young children: Theoretical advances, empirical

research, and policy implications. Science, 337 (6102), 1623–1627.
Gopnik, A., Glymour, C., Sobel, D. M., Schulz, L. E., Kushnir, T., & Danks, D. (2004).

A theory of causal learning in children: Causal maps and bayes nets. Psychological
Review, 111 (1), 1–30.

Gopnik, A., & Schulz, L. (2004). Mechanisms of theory formation in young children. Trends
in Cognitive Sciences, 8 (8), 371–377.

246

Gopnik, A., & Tenenbaum, J. B. (2007). Bayesian networks, bayesian learning and cognitive
development. Developmental Science, 10 (3), 281–287.

Gopnik, A., & Wellman, H. M. (2012). Reconstructing constructivism: Causal models, bayesian
learning mechanisms, and the theory theory. Psychological Bulletin, 138 (6), 1085–
1108.

Gottlieb, J., Oudeyer, P.-Y., Lopes, M., & Baranes, A. (2013). Information-seeking, curiosity,
and attention: Computational and neural mechanisms. Trends in Cognitive Sciences,
17 (11), 585–593.

Graham, P. (1993). On lisp: Advanced techniques for common lisp. Prentice Hall.
Graves, A., Wayne, G., & Danihelka, I. (2014). Neural turing machines. arXiv preprint

arXiv:1410.5401.
Green, C. C., Waldinger, R. J., Barstow, D. R., Elschlager, R., Lenat, D. B., McCune, B. R.,

Shaw, D. E., & Steinberg, L. I. (1974). Progress report on program-understanding
systems (tech. rep. AIM-240). Stanford Artificial Intelligence Laboratory.

Green, C. (1981). Application of theorem proving to problem solving. Readings in artificial
intelligence (pp. 202–222). Elsevier.

Greenfield, P. M., Nelson, K., & Saltzman, E. (1972). The development of rulebound strate-
gies for manipulating seriated cups: A parallel between action and grammar. Cognitive
psychology, 3 (2), 291–310.

Griffiths, T. L., Lieder, F., & Goodman, N. D. (2015). Rational use of cognitive resources:
Levels of analysis between the computational and the algorithmic. Topics in Cognitive
Science, 7 (2), 217–229.

Groen, G., & Parkman, J. (1972). A chronometric analysis of simple addition. Psychological
Review, 79 (4), 329–343.

Groen, G., & Resnick, L. B. (1977). Can preschool children invent addition algorithms?
Journal of Educational Psychology, 69 (6), 645–652.

Grünwald, P. D. (2007). The minimum description length principle. MIT press.
Grünwald, P. D., & Vitányi, P. M. (2008). Algorithmic information theory.
Gulwani, S., Korthikanti, V. A., & Tiwari, A. (2011). Synthesizing geometry constructions.

ACM SIGPLAN Notices, 46 (6), 50–61.
Gulwani, S., Polozov, O., & Singh, R. (2017). Program synthesis. Foundations and Trends

in Programming Languages, 4 (1-2), 1–119.
Haber, N., Mrowca, D., Wang, S., Fei-Fei, L. F., & Yamins, D. L. (2018). Learning to

play with intrinsically-motivated, self-aware agents. Advances in Neural Information
Processing Systems, 8388–8399.

Harman, G. (1975). Meaning and semantics. Semantics and philosophy. NYU Press.
Harman, G. (1982). Conceptual role semantics. Notre Dame Journal of Formal Logic, 23 (2),

242–256.
Harman, G. (1987). (non-solipsistic) conceptual role semantics. New directions in semantics.

Academic Press.
Harper, R. (2016). Practical foundations for programming languages. Cambridge University

Press.
Harris, P. L. (2012). The child as anthropologist. Infancia y Aprendizaje, 35 (3), 259–277.
Hartnett, P., & Gelman, R. (1998). Early understandings of numbers: Paths or barriers to

the construction of new understandings? Learning and Instruction, 8 (4), 341–374.

247

Hartnett, P. M. (1991). The development of mathematical insight: From one, two, three to
infinity (Doctoral dissertation). University of Pennsylvania.

Hewitt, L. B., Le, T. A., & Tenenbaum, J. B. (2020). Learning to infer program sketches.
Proceedings of the 36th Conference Conference on Uncertainty in Artificial Intelli-
gence.

Hindley, R. (1969). The principal type-scheme of an object in combinatory logic. Transactions
of the american mathematical society, 146, 29–60.

Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural computation,
9 (8), 1735–1780.

Hofmann, M., Kitzelmann, E., & Schmid, U. (2009). A unifying framework for analysis and
evaluation of inductive programming systems. Proceedings of the 2nd Conference on
Artificiel General Intelligence (2009).

Hofstadter, D. R. (1979). Gödel, escher, bach: An eternal golden braid (Vol. 13). Basic Books.
Hofstadter, D. R. (1995). Fluid concepts and creative analogies: Computer models of the

fundamental mechanisms of thought. Basic books.
Holland, J. (1975). Adaptation in natural and artificial systems: An introductory analysis

with application to biology. University of Michigan Press.
Holyoak, K. J. (2012). Analogy and relational reasoning. The oxford handbook of thinking

and reasoning (pp. 234–259). Oxford University Press.
Hutter, M. (2005). Universal artificial intelligence. Springer.
Ikutani, Y., Kubo, T., Nishida, S., Hata, H., Matsumoto, K., Ikeda, K., & Nishimoto, S.

(2020). Expert programmers have fine-tuned cortical representations of source code.
bioRxiv.

Inhelder, B., & Piaget, J. (1964). The early growth of logic in the child: Classification and
seriation. Humanities Press.

ISO. (2016). Sql — part 1: Framework.
Ivanova, A. A., Srikant, S., Sueoka, Y., Kean, H. H., Dhamala, R., O’reilly, U.-M., Bers,

M. U., & Fedorenko, E. (2020). Comprehension of computer code relies primarily on
domain-general executive resources. BioRxiv.

James, S., Konidaris, G., & Rosman, B. (2017). An analysis of monte carlo tree search.
Thirty-First AAAI Conference on Artificial Intelligence.

Jara-Ettinger, J., Gweon, H., Schulz, L. E., & Tenenbaum, J. B. (2016). The naïve utility
calculus: Computational principles underlying commonsense psychology. Trends in
cognitive sciences, 20 (8), 589–604.

Jara-Ettinger, J., Piantadosi, S., Spelke, E. S., Levy, R., & Gibson, E. (2017). Mastery of
the logic of natural numbers is not the result of mastery of counting: Evidence from
late counters. Developmental Science. https://doi.org/10.1111/desc.12459

Jay, B. (2009). Pattern calculus. Springer Nature. https://doi.org/10.1007/978-3-540-89185-
7

Jay, B. (2016). Programs as data structures in 𝜆SF-calculus. Electronic Notes in Theoretical
Computer Science.

Jay, B. (2019). A simpler lambda calculus. Proceedings of the 2019 ACM SIGPLAN Workshop
on Partial Evaluation and Program Manipulation, 1–9.

Jay, B., & Given-Wilson, T. (2011). A combinatory account of internal structure. The Journal
of Symbolic Logic, 76 (3), 807–826.

248

https://doi.org/10.1111/desc.12459
https://doi.org/10.1007/978-3-540-89185-7
https://doi.org/10.1007/978-3-540-89185-7

Jay, B., & Vergara, J. (2017). Conflicting accounts of 𝜆-definability. Journal of Logical and
Algebraic Methods in Programming, 87.

Jefferys, W. H., & Berger, J. O. (1992). Ockham’s razor and bayesian analysis. American
Scientist, 80 (1), 64–72.

Jha, S., Gulwani, S., Seshia, S. A., & Tiwari, A. (2010). Oracle-guided component-based
program synthesis. 2010 ACM/IEEE 32nd International Conference on Software En-
gineering, 1, 215–224.

Johnson-Laird, P. N. (1977). Procedural semantics. Cognition, 5 (3), 189–214.
Johnson-Laird, P. N. (1989). Mental models. MIT Press.
Johnson-Laird, P. N. (2012). Inference with mental models. The oxford handbook of thinking

and reasoning (pp. 134–145). Oxford University Press.
Jones, R. M., & Van Lehn, K. (1994). Acquisition of children’s addition strategies: A model

of impasse-free, knowledge-level learning. Machine Learning, 16 (1-2), 11–36.
Joshi, R., Nelson, G., & Randall, K. (2002). Denali: A goal-directed superoptimizer. ACM

SIGPLAN Notices, 37 (5), 304–314.
Joulin, A., & Mikolov, T. (2015). Inferring algorithmic patterns with stack-augmented re-

current nets. Advances in neural information processing systems, 190–198.
Kahneman, D., Slovic, S. P., Slovic, P., & Tversky, A. (1982). Judgment under uncertainty:

Heuristics and biases. Cambridge university press.
Karmiloff-Smith, A. (1992). Beyond modularity. a developmental perspective on cognitive

science. MIT Press.
Karmiloff-Smith, A. (1988). The child is a theoretician, not an inductivist. Mind & Language,

3 (3), 183–196.
Kashyap, R. L., & Oommen, B. J. (1984). Spelling correction using probabilistic methods.

Pattern Recognition Letters, 2 (3), 147–154.
Katayama, S. (2013). Magichaskeller on the web: Automated programming as a service.

Haskell Symposium.
Kaye, D. B., Post, T. A., Hall, V. C., & Dineen, J. T. (1986). Emergence of information-

retrieval strategies in numerical cognition: A developmental study. Cognition and
Instruction, 3 (2), 127–150.

Kearns, M. J., & Vazirani, U. V. (1994). An introduction to computational learning theory.
MIT press.

Kemp, C., Shafto, P., Berke, A., & Tenenbaum, J. B. (2007). Combining causal and similarity-
based reasoning. Advances in neural information processing systems, 681–688.

Kemp, C., & Tenenbaum, J. B. (2008). The discovery of structural form. Proceedings of the
National Academy of Sciences, 105 (31), 10687–10692.

Kemp, C., & Tenenbaum, J. B. (2009). Structured statistical models of inductive reasoning.
Psychological review, 116 (1), 20.

Kemp, C., Tenenbaum, J. B., Niyogi, S., & Griffiths, T. L. (2010). A probabilistic model of
theory formation. Cognition, 114 (2), 165–196.

Kidd, C., & Hayden, B. Y. (2015). The psychology and neuroscience of curiosity. Neuron,
88 (3), 449–460.

Kinzler, K. D., & Spelke, E. S. (2007). Core systems in human cognition. Progress in brain
research (pp. 257–264). Elsevier BV. https://doi.org/10.1016/s0079-6123(07)64014-x

249

https://doi.org/10.1016/s0079-6123(07)64014-x

Kitzelmann, E. (2009). Inductive programming: A survey of program synthesis techniques.
International workshop on approaches and applications of inductive programming, 50–
73.

Knoth, T., Wang, D., Polikarpova, N., & Hoffmann, J. (2019). Resource-guided program
synthesis. Proceedings of the 40th ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation, 253–268.

Knuth, D. E. (1973). The art of computer programming, volume 3: Searching and sorting.
Addison-Wesley Publishing Company.

Kohlberg, L. (1968). The child as a moral philosopher. Psychology Today, 2 (4), 25–30.
Koller, D., & Friedman, N. (2009). Probabilistic graphical models: Principles and techniques.

MIT Press.
Kolmogorov, A. N. (1963). On tables of random numbers. Sankhyā: The Indian Journal of

Statistics, Series A, 369–376.
Koopman, P., Plasmeijer, R., & Jansen, J. M. (2014). Church encoding of data types con-

sidered harmful for implementations. 26th Symposium on Implementation and Appli-
cation of Functional Languages (IFL).

Koza, J. R. (1989). Hierarchical genetic algorithms operating on populations of computer
programs. Proceedings of the International Joint Conference on Artifical Intelligence,
89, 768–774.

Koza, J. R., & Koza, J. R. (1992). Genetic programming: On the programming of computers
by means of natural selection. MIT press.

Kuhn, T. S. (1962). The structure of scientific revolutions. University of Chicago Press.
Labov, W. (1989). The child as linguistic historian. Language Variation and Change, 1 (1),

85–97.
Lafond, D., Lacouture, Y., & Mineau, G. (2007). Complexity minimization in rule-based

category learning: Revising the catalog of boolean concepts and evidence for non-
minimal rules. Journal of Mathematical Psychology, 51 (2), 57–74.

Lake, B., Ullman, T., Tenenbaum, J., & Gershman, S. (2017). Building machines that learn
and think like people. Behavioral and Brain Sciences, 40. https://doi.org/10.1017/
S0140525X16001837

Lake, B., Salakhutdinov, R., & Tenenbaum, J. B. (2015). Human-level concept learning
through probabilistic program induction. Science, 350 (6266), 1332–1338.

Lake, B. M., & Piantadosi, S. T. (2020). People infer recursive visual concepts from just a
few examples. Computational Brain & Behavior, 3 (1), 54–65.

Lake, B. M., Salakhutdinov, R., & Tenenbaum, J. B. (2019). The omniglot challenge: A
3-year progress report. Current Opinion in Behavioral Sciences, 29, 97–104.

Langdon, W. B., & Poli, R. (2013). Foundations of genetic programming. Springer Science
& Business Media.

LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521 (7553), 436–444.
Lehman, J., & Stanley, K. O. (2011a). Abandoning objectives: Evolution through the search

for novelty alone. Evolutionary Computation, 19 (2), 189–223.
Lehman, J., & Stanley, K. O. (2011b). Novelty search and the problem with objectives.

Genetic programming theory and practice ix (pp. 37–56). Springer.
Lenat, D. (1976). Am: An artificial intelligence approach to discovery in mathematics (Doc-

toral dissertation). Stanford University.

250

https://doi.org/10.1017/S0140525X16001837
https://doi.org/10.1017/S0140525X16001837

Lenat, D. B. (1983). Eurisko: A program that learns new heuristics and domain concepts: The
nature of heuristics iii: Program design and results. Artificial Intelligence, 21 (1-2),
61–98.

Levy, S. (1984). Hackers: Heroes of the computer revolution. Anchor/Doubleday.
Lewis, R. L., Howes, A., & Singh, S. (2014). Computational rationality: Linking mechanism

and behavior through bounded utility maximization. Topics in Cognitive Science,
6 (2), 279–311.

Liang, P., Jordan, M. I., & Klein, D. (2010). Type-based mcmc. Human Language Technolo-
gies: The 2010 Annual Conference of the North American Chapter of the Association
for Computational Linguistics, 573–581.

Lieder, F., & Griffiths, T. L. (2020). Resource-rational analysis: Understanding human cog-
nition as the optimal use of limited computational resources. Behavioral and Brain
Sciences, 43.

Lin, D., Dechter, E., Ellis, K., Tenenbaum, J. B., & Muggleton, S. H. (2014). Bias reformu-
lation for one-shot function induction. Proceedings of the 21st European Conference
on Artificial Intelligence, 525–530.

Loar, B. (1982). Conceptual role and truth-conditions: Comments on Harman’s paper:“Conceptual
Role Semantics”. Notre Dame Journal of Formal Logic, 23 (3), 272–283.

Locke, J. (1690). An essay concerning human understanding (1st ed.). Thomas Bassett.
Lombrozo, T. (2012). Explanation and abductive inference. The oxford handbook of thinking

and reasoning (pp. 260–276). Oxford University Press.
Lombrozo, T. (2019). “learning by thinking” in science and in everyday life. In A. Levy & P.

Godfrey-Smith (Eds.), The scientific imagination (pp. 230–249). Oxford University
Press.

Lovett, M. C., & Anderson, J. R. (2005). Thinking as a production system. In K. J. Holyoak
& R. G. Morrison (Eds.), The Oxford handbook of thinking and reasoning (pp. 401–
429). Cambridge University Press.

Lucas, C. G., Griffiths, T. L., Xu, F., Fawcett, C., Gopnik, A., Kushnir, T., Markson, L.,
& Hu, J. (2014). The child as econometrician: A rational model of preference under-
standing in children. PLoS One. https://doi.org/10.1371/journal.pone.0092160

Lupyan, G., & Bergen, B. (2016). How language programs the mind. Topics in cognitive
science, 8 (2), 408–424.

MacKay, D. J. (2003). Information theory, inference and learning algorithms. Cambridge
University press.

Macnamara, J. (1999). Through the rearview mirror: Historical reflections on psychology.
MIT Press.

Macnamara, J., & Reyes, G. E. (1994). The logical foundations of cognition. Oxford Univer-
sity Press.

Mahabal, A. A. (2010). Seqsee: A concept-centered architecture for sequence perception (Doc-
toral dissertation). Indiana University.

Manna, Z., & Waldinger, R. (1980). A deductive approach to program synthesis. ACM
Transactions on Programming Languages and Systems (TOPLAS), 2 (1), 90–121.

Mareschal, D., & Shultz, T. R. (1999). Development of children’s seriation: A connectionist
approach. Connection Science, 11 (2), 149–186.

Marr, D. (1982). Vision. W.H. Freeman.

251

https://doi.org/10.1371/journal.pone.0092160

Martelli, A., & Montanari, U. (1982). An efficient unification algorithm. ACM Transactions
on Programming Languages and Systems (TOPLAS), 4 (2), 258–282.

Martin, R. C. (2009). Clean code: A handbook of agile software craftsmanship. Pearson Ed-
ucation.

McCarthy, J. (1960). Recursive functions of symbolic expressions and their computation by
machine, part i. Communications of the ACM, 3 (4), 184–195.

McCulloch, W. S., & Pitts, W. (1943). A logical calculus of the ideas immanent in nervous
activity. The bulletin of mathematical biophysics, 5 (4), 115–133.

McGinn, C. (1993). Problems in philosophy. the limits of inquiry.
McGonigle-Chalmers, M., & Kusel, I. (2019). The development of size sequencing skills:

An empirical and computational analysis. Monographs of the Society for Research in
Child Development, 84 (4), 7–202.

Meredith, M. J. (1986). Seek-whence: A model of pattern perception (Doctoral dissertation).
Indiana University.

Miller, G. A. (1956). The magical number seven, plus or minus two: Some limits on our
capacity for processing information. Psychological review, 63 (2), 81.

Milner, R. (1978). A theory of type polymorphism in programming. Journal of computer and
system sciences, 17 (3), 348–375.

Minsky, M. L. (1967). Computation: Finite and infinite machines. Prentice-Hall.
Mitchell, M. (1992). Copycat: A computer model of high-level perception and conceptual

slippage in analogy-making (Doctoral dissertation). University of Michigan.
Mollica, F., & Piantadosi, S. (2019). Logical word learning: The case of kinship. https :

//doi.org/10.31234/osf.io/a7tnb
Muggleton, S., & De Raedt, L. (1994). Inductive logic programming: Theory and methods.

Journal of Logic Programming, 19, 629–679.
Muggleton, S. H., Lin, D., & Tamaddoni-Nezhad, A. (2015). Meta-interpretive learning of

higher-order dyadic datalog: Predicate invention revisited. Machine Learning, 100 (1),
49–73.

Murphy, G. L., & Medin, D. L. (1985). The role of theories in conceptual coherence. Psy-
chological Review, 92 (3), 289–316.

Murphy, K. P. (2012). Machine learning: A probabilistic perspective. MIT Press.
National Governors Association Center for Best Practices, Council of Chief State School

Officers. (2010). Common core state standards mathematics. National Governors As-
sociation Center for Best Practices, Council of Chief State School Officers.

Neches, R. (1987). Learning through incremental refinement of procedures. In D. Klahr, P.
Langley, & R. Neches (Eds.), Production system models of learning and development
(pp. 163–219). MIT Press.

Newell, A., Shaw, J. C., & Simon, H. A. (1959). Report on a general problem solving program.
IFIP Congress, 256, 64.

Newell, A., Shaw, J. C., & Simon, H. A. (1958). Elements of a theory of human problem
solving. Psychological Review, 65 (3), 151.

Newell, A., & Simon, H. (1956). The logic theory machine–a complex information processing
system. IRE Transactions on Information Theory, 2 (3), 61–79.

252

https://doi.org/10.31234/osf.io/a7tnb
https://doi.org/10.31234/osf.io/a7tnb

Nosofsky, R. M., Gluck, M. A., Palmeri, T. J., McKinley, S. C., & Glauthier, P. (1994).
Comparing modes of rule-based classification learning: A replication and extension of
shepard, hovland, and jenkins (1961). Memory & cognition, 22 (3), 352–369.

Nosofsky, R. M., Palmeri, T. J., & McKinley, S. C. (1994). Rule-plus-exception model of
classification learning. Psychological review, 101 (1), 53.

Nowak, M., & Sigmund, K. (1993). A strategy of win-stay, lose-shift that outperforms tit-
for-tat in the prisoner’s dilemma game. Nature, 364 (6432), 56–58.

Nye, M., Hewitt, L., Tenenbaum, J., & Solar-Lezama, A. (2019). Learning to infer pro-
gram sketches. Proceedings of the 36th International Conference on Machine Learn-
ing, 4861–4870.

Ohshima, Y., Amelang, D., Kaehler, T., Freudenberg, B., Lunzer, A., Kay, A., Piumarta,
I., Yamamiya, T., Borning, A., Samimi, H., Victor, B., & Rose, K. (2012). Steps
toward the reinvention of programming, 2012 final report submitted to the national
science foundation (nsf) october 2012 (tech. rep. TR-2012-001). Viewpoints Research
Institute.

Okasaki, C. (1999). Purely functional data structures. Cambridge University Press.
Osera, P.-M., & Zdancewic, S. (2015). Type-and-example-directed program synthesis. ACM

SIGPLAN Notices, 50 (6), 619–630.
Oudeyer, P. Y. (2018). Computational theories of curiosity-driven learning. In G. Gordon

(Ed.), The new science of curiosity. Nova Science Publishers.
Overlan, M., Jacobs, R., & Piantadosi, S. (2017). Learning abstract visual concepts via

probabilistic program induction in a language of thought. Cognition, 168, 320–334.
Parisotto, E., Mohamed, A.-r., Singh, R., Li, L., Zhou, D., & Kohli, P. (2016). Neuro-symbolic

program synthesis. arXiv preprint arXiv:1611.01855.
Pearl, J. (1988). Probabilistic reasoning in intelligent systems: Networks of plausible infer-

ence. Morgan Kaufmann.
Peterson, C. R., & Beach, L. R. (1967). Man as an intuitive statistician. Psychological Bul-

letin, 68 (1), 29–46.
Piaget, J. (1952). The child’s conception of number. Routledge; Kegan Paul.
Piaget, J. (1955). The child’s construction of reality. Routledge & Kegan Paul.
Piantadosi, S., & Jacobs, R. (2016). Four problems solved by the probabilistic language of

thought. Current Directions in Psychological Science, 25 (1), 54–59.
Piantadosi, S., Tenenbaum, J., & Goodman, N. (2012). Bootstrapping in a language of

thought: A formal model of numerical concept learning. Cognition, 123 (2), 199–217.
Piantadosi, S., Tenenbaum, J., & Goodman, N. (2016). The logical primitives of thought: Em-

pirical foundations for compositional cognitive models. Psychological Review, 123 (4),
392–424.

Piantadosi, S. T. (2011). Learning and the language of thought (Doctoral dissertation). Mas-
sachusetts Institute of Technology.

Piantadosi, S. T. (2016). The computational origin of representation and conceptual change
[unpublished draft].

Piantadosi, S. T. (2020). Fleet system.
Pierce, B. C. (2002). Types and programming languages. MIT Press.
Poli, R., Langdon, W. B., McPhee, N. F., & Koza, J. R. (2008). A field guide to genetic

programming. Lulu.

253

Polikarpova, N., Kuraj, I., & Solar-Lezama, A. (2016). Program synthesis from polymorphic
refinement types. ACM SIGPLAN Notices, 51 (6), 522–538.

Polozov, O., & Gulwani, S. (2015). Flashmeta: A framework for inductive program synthesis.
Proceedings of the 2015 ACM SIGPLAN International Conference on Object-Oriented
Programming, Systems, Languages, and Applications, 107–126.

Post, E. L. (1943). Formal reductions of the general combinatorial decision problem. Amer-
ican Journal of Mathematics, 65 (2), 197. https://doi.org/10.2307/2371809

Rahwan, I., Cebrian, M., Obradovich, N., Bongard, J., Bonnefon, J.-F., Breazeal, C., Cran-
dall, J. W., Christakis, N. A., Couzin, I. D., Jackson, M. O., et al. (2019). Machine
behaviour. Nature, 568 (7753), 477–486.

Rao, M. K. (2004). Inductive inference of term rewriting systems from positive data. Inter-
national Conference on Algorithmic Learning Theory, 69–82.

Reed, S., & de Freitas, N. (2015). Neural programmer-interpreters.
Resnick, L. B., & Neches, R. (1984). Factors affecting individual differences in learning

ability. In R. J. Sternberg (Ed.), Advances in the psychology of human intelligence
(pp. 275–323). Lawrence Erlbaum Associates.

Rips, L. J. (1994). The psychology of proof: Deductive reasoning in human thinking. MIT
Press.

Robinson, J. A. (1965). A machine-oriented logic based on the resolution principle. Journal
of the ACM (JACM), 12 (1), 23–41.

Romano, S., Salles, A., Amalric, M., Dehaene, S., Sigman, M., & Figueira, S. (2018). Bayesian
validation of grammar productions for the language of thought. PLoS One. https:
//doi.org/10.1371/journal.pone.0200420

Rothe, A., Lake, B. M., & Gureckis, T. (2017). Question asking as program generation.
Advances in Neural Information Processing Systems, 1046–1055.

Rule, J., Dechter, E., & Tenenbaum, J. B. (2015). Representing and learning a large system
of number concepts with latent predicate networks. Proceedings of the 37th Annual
Conference of the Cognitive Science Society.

Rule, J., Schulz, E., Piantadosi, S. T., & Tenenbaum, J. B. (2018). Learning list concepts
through program induction. Proceedings of the 40th Annual Conference of the Cogni-
tive Science Society.

Rule, J. S., Piantadosi, S. T., & Tenenbaum, J. B. (in press). The child as hacker. Trends in
Cognitive Sciences.

Rumelhart, D. E., McClelland, J. L., & PDP Research Group. (1987). Parallel distributed
processing. MIT Press.

Russell, S., & Norvig, P. (2002). Artificial intelligence: A modern approach. Pearson.
Saxe, G. B. (1988a). Candy selling and math learning. Educational Researcher, 17 (6), 14–21.
Saxe, G. B. (1988b). The mathematics of child street vendors. Child Development, 59 (5),

1415–1425.
Saxe, G. B., Guberman, S. R., & Gearhart, M. (1987). Social processes in early number

development. Monographs of the Society for Research in Child Development, 52 (2).
Schkufza, E., Sharma, R., & Aiken, A. (2013). Stochastic superoptimization. ACM SIGARCH

Computer Architecture News, 41 (1), 305–316.

254

https://doi.org/10.2307/2371809
https://doi.org/10.1371/journal.pone.0200420
https://doi.org/10.1371/journal.pone.0200420

Schmidhuber, J. (1987). Evolutionary principles in self-referential learning, or on learning
how to learn: The meta-meta-... hook (Doctoral dissertation). Technische Universität
München.

Schönfinkel, M. (1924). Über die bausteine der mathematischen logik. Mathematische An-
nalen, 92 (3), 305–316.

Schultz, T. R., & Vogel, A. (2004). A connectionist model of the development of transitivity.
Proceedings of the Annual Conference of the Cognitive Science Society, 26 (26).

Schulz, E., Tenenbaum, J. B., Duvenaud, D., Speekenbrink, M., & Gershman, S. J. (2017).
Compositional inductive biases in function learning. Cognitive psychology, 99, 44–79.

Schulz, L. (2012a). Finding new facts; thinking new thoughts. Advances in child development
and behavior (pp. 269–294). Elsevier.

Schulz, L. (2012b). The origins of inquiry: Inductive inference and exploration in early child-
hood. Trends in Cognitive Sciences, 16 (7), 382–389.

Secada, W. G., Fuson, K. C., & Hall, J. W. (1983). The transition from counting-all to
counting-on in addition. Journal for Research in Mathematics Education, 14 (1), 47–
57.

Selman, R. L. (1981). The child as a friendship philosopher. In S. R. Asher & J. M. Gottman
(Eds.), The development of children’s friendships (pp. 242–272). Cambridge Univer-
sity Press.

Shapiro, E. Y. (1983). Algorithmic program debugging. MIT Press.
Shaw, D. E., Swartout, W. R., & Green, C. C. (1975). Inferring lisp programs from examples.

IJCAI, 75, 260–267.
Shepard, R. N., Hovland, C. I., & Jenkins, H. M. (1961). Learning and memorization of

classifications. Psychological monographs: General and applied, 75 (13), 1.
Shrager, J., & Siegler, R. (1998). Scads: A model of children’s strategy choices and strategy

discoveries. Psychological Science, 9 (5), 405–410.
Siegler, R., & Jenkins, E. (1989). How children discover new strategies. Erlbaum.
Siegler, R. S. (1996). Emerging minds. Oxford Univesity Press.
Siegler, R., & Shipley, C. (1995). Variation, selection, and cognitive change. In T. J. Simon

& G. S. Halford (Eds.), Developing cognitive competence: New approaches to process
modeling (pp. 31–76). Psychology Press.

Siegler, R., & Shrager, J. (1984). Strategy choices in addition and subtraction: How do
children know what to do? In C. Sophian (Ed.), Origins of cognitive skills (pp. 229–
293). Lawrence Erlbaum Associates.

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., Van Den Driessche, G., Schrit-
twieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., et al. (2016). Mastering
the game of go with deep neural networks and tree search. Nature, 529 (7587), 484–
489.

Simmons-Edler, R., Miltner, A., & Seung, S. (2018). Program synthesis through reinforce-
ment learning guided tree search. arXiv preprint arXiv:1806.02932.

Sipser, M. (2012). Introduction to the theory of computation. Cengage Learning.
Siskind, J. (1996). A computational study of cross-situational techniques for learning word-

to-meaning mappings. Cognition, 61, 31–91.

255

Slaughter, V., Itakura, S., Kutsuki, A., & Siegal, M. (2011). Learning to count begins in
infancy: Evidence from 18 month olds’ visual preferences. Proceedings of the Royal
Society of London B: Biological Sciences, 278 (1720), 2979–2984.

Smith, D. R. (1984). The synthesis of lisp programs from examples: A survey. In A. W. Bier-
mann, G. Guiho, & Y. Kodratoff (Eds.), Automatic program construction techniques
(pp. 307–324). Macmillan.

Smith, K., Mei, L., Yao, S., Wu, J., Spelke, E., Tenenbaum, J. B., & Ullman, T. (2019).
Modeling expectation violation in intuitive physics with coarse probabilistic object
representations. Advances in Neural Information Processing Systems, 8983–8993.

Solar-Lezama, A. (2008). Program synthesis by sketching (Doctoral dissertation). University
of California, Berkeley.

Solomonoff, R. J. (1964a). A formal theory of inductive inference, part i. Information and
Control, 7 (1), 1–22.

Solomonoff, R. J. (1964b). A formal theory of inductive inference. part ii. Information and
control, 7 (2), 224–254.

Spelke, E. S., & Kinzler, K. D. (2007). Core knowledge. Developmental Science, 10 (1), 89–
96. https://doi.org/10.1111/j.1467-7687.2007.00569.x

Steffe, L., Von Glasersfeld, E., Richards, J., & Cobb, P. (1983). Children’s counting types:
Philosophy, theory, and applications. Praeger.

Sternberg, R. J., & Davidson, J. E. (1995). The nature of insight. The MIT Press.
Stuhlmuller, A., Tenenbaum, J. B., & Goodman, N. D. (2010). Learning structured generative

concepts. Proceedings of the Annual Conference of the Cognitive Science Society.
Sussman, G. J. (1973). A computational model of skill acquisition (Doctoral dissertation).

Massaschusetts Institute of Technology.
Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning. MIT Press.
Svenson, O. (1975). Analysis of time required by children for simple additions. Acta Psycho-

logica, 39 (4), 289–301.
Tenenbaum, J. B. (1999). Bayesian modeling of human concept learning. Advances in Neural

Information Processing Systems, 59–68.
Tenenbaum, J. B. (2000). Rules and similarity in concept learning. Advances in Neural

Information Processing Systems, 59–65.
Tenenbaum, J. B., Kemp, C., Griffiths, T. L., & Goodman, N. D. (2011). How to grow a

mind: Statistics, structure, and abstraction. Science, 331 (6022), 1279–1285.
Thomas, D., & Hunt, A. (2019). The pragmatic programmer. Addison-Wesley Professional.
Thompson, W. R. (1933). On the likelihood that one unknown probability exceeds another

in view of the evidence of two samples. Biometrika, 25 (3/4), 285–294.
Torlak, E., & Bodik, R. (2013). Growing solver-aided languages with rosette. Proceedings of

the 2013 ACM international symposium on New ideas, new paradigms, and reflections
on programming & software, 135–152.

Turing, A. M. (1936). On computable numbers, with an application to the entscheidungsprob-
lem. Proceedings of the London Mathematical Society, 2 (42), 230–265.

Turkle, S., & Papert, S. (1992). Epistemological pluralism and the revaluation of the concrete.
Journal of Mathematical Behavior, 11 (1), 3–33.

Ullman, T., Goodman, N., & Tenenbaum, J. (2012). Theory learning as stochastic search in
the language of thought. Cognitive Development, 455–480.

256

https://doi.org/10.1111/j.1467-7687.2007.00569.x

Ullman, T. D., Spelke, E., Battaglia, P., & Tenenbaum, J. B. (2017). Mind games: Game
engines as an architecture for intuitive physics. Trends in Cognitive Sciences, 21 (9),
649–665.

Ullman, T. D., Stuhlmüller, A., Goodman, N. D., & Tenenbaum, J. B. (2018). Learning
physical parameters from dynamic scenes. Cognitive psychology, 104, 57–82.

Ullman, T. D., & Tenenbaum, J. B. (2020). Bayesian models of conceptual development:
Learning as building models of the world. Annual Review of Psychology.

Valiant, L. G. (1984). A theory of the learnable. Communications of the ACM, 27 (11), 1134–
1142.

Van Raamsdonk, F. (1999). Higher-order rewriting. International Conference on Rewriting
Techniques and Applications, 220–239.

Vousden, W. D., Farr, W. M., & Mandel, I. (2015). Dynamic temperature selection for
parallel tempering in markov chain monte carlo simulations. Monthly Notices of the
Royal Astronomical Society, 455 (2), 1919–1937. https://doi.org/10.1093/mnras/
stv2422

Vuculescu, O., Stausberg, N., Sergeev, R., & Ham, H. (2020). What do the experts know: An
empirical investigation of adaptive search. Proceedings of the 42nd Annual Conference
of the Cognitive Science Society.

W3C. (2017). Html 5.2. Retrieved August 3, 2020, from https://www.w3.org/TR/html52/
Wagner, K., Tillman, K., & Barner, D. (2016). Inferring number, time, and color concepts

from core knowledge and linguistic structure. In D. Barner & A. S. Baron (Eds.),
Core knowledge and conceptual change. Oxford University Press.

Wan, X., Nakatani, H., Ueno, K., Asamizuya, T., Cheng, K., & Tanaka, K. (2011). The
neural basis of intuitive best next-move generation in board game experts. Science,
331 (6015), 341–346.

Wang, L., Amalric, M., Fang, W., Jiang, X., Pallier, C., Figueira, S., Sigman, M., & Dehaene,
S. (2019). Representation of spatial sequences using nested rules in human prefrontal
cortex. NeuroImage, 186, 245–255.

Wason, P. C. (1960). On the failure to eliminate hypotheses in a conceptual task. Quarterly
journal of experimental psychology, 12 (3), 129–140.

Wellman, H. M., & Gelman, S. A. (1992). Cognitive development: Foundational theories of
core domains. Annual Review of Psychology, 43 (1), 337–375.

Wellman, H. M., & Gelman, S. A. (1998). Knowledge acquisition in foundational domains.
In W. Damon (Ed.), Handbook of child psychology: Vol. 2. cognition, perception, and
language (pp. 523–573). John Wiley & Sons Inc.

Wierzbicka, A. (1996). Semantics: Primes and universals. Oxford University Press.
Woods, W. A. (1981). Procedural semantics as a theory of meaning. In B. W. A. Joshi &

I. Sag (Eds.), Elements of discourse understanding. Cambridge University Press.
Wynn, K. (1990a). Children’s understanding of counting. Cognition, 36 (2), 155–193.
Wynn, K. (1990b). Children’s understanding of counting. Cognition, 36 (2), 155–193.
Wynn, K. (1992a). Addition and subtraction by human infants. Nature, 358 (6389), 749.
Wynn, K. (1992b). Children’s acquisition of the number words and the counting system.

Cognitive Psychology, 24 (2), 220–251.
Xu, F. (2019). Towards a rational constructivist theory of cognitive development. Psycho-

logical Review, 126 (6), 841–864.

257

https://doi.org/10.1093/mnras/stv2422
https://doi.org/10.1093/mnras/stv2422
https://www.w3.org/TR/html52/

Xu, F., & Griffiths, T. L. (2011). Probabilistic models of cognitive development: Towards a
rational constructivist approach to the study of learning and development. Cognition,
120, 299–301.

Yang, C. (2016). The linguistic origin of the next number. LingBuzz preprint lingbuzz/003824.
Yildirim, I., & Jacobs, R. A. (2015). Learning multisensory representations for auditory-

visual transfer of sequence category knowledge: A probabilistic language of thought
approach. Psychonomic Bulletin & Review, 22 (3), 673–686.

Young, R. M. (1976). Seriation by children: An artifical intelligence analysis of piagetian
task. Birkhäuser.

Zettlemoyer, L. S., & Collins, M. (2005). Learning to map sentences to logical form: Struc-
tured classification with probabilistic categorial grammars. Proceedings of the 21st
Conference in Uncertainty in Artificial Intelligence, 658–666.

Zylberberg, A., Dehaene, S., Roelfsema, P. R., & Sigman, M. (2011). The human turing
machine: A neural framework for mental programs. Trends in Cognitive Sciences,
15 (7), 293–300.

258

	Introduction
	Three observations about learning
	Knowledge as code
	Learning as programming

	The child as hacker
	From programming to hacking
	The many values of hacking
	The many activities of hacking
	The intrinsic motivation of hacking
	Putting it all together

	Hacking early arithmetic
	Hacking intuitive theories
	Hacking and other metaphors
	The child as scientist
	Resource rationality & novelty search
	Workshop and evolutionary metaphors

	Prospects for a computational account of learning

	List functions as a domain for psychological investigation
	The domain of list functions
	Capturing classic domains and developmental case studies
	Conclusion

	HL: A hacker-like model of learning
	Representation: Term rewriting as a model of mental representations
	Meaning through conceptual role
	The value of domain-specific languages
	Term rewriting

	Learning Mechanisms: Learning as iterative meta-programming
	Hypothesis-and-goal-driven search
	Hacking as iterative revision
	HL's learning mechanisms
	Chaining mechanisms into meta-programs
	Monte Carlo tree search

	Learning Objectives: simple, accurate, discoverable, and well-formed
	Abstract error maps
	Avoiding premature optimization
	A prior assessing discoverability
	A prior assessing simplicity
	A likelihood assessing accuracy
	A likelihood assessing well-formedness
	Two objectives for HL

	Conclusion

	Human learning of list functions: Structural sources of difficulty
	Introduction
	Method
	Participants
	Materials
	Procedure

	Results
	Discussion

	Human-like learning of list functions
	Introduction
	Concepts
	Models
	Enumeration
	Fleet
	Metagol
	RobustFill
	HL

	Results
	Discussion

	Conclusion
	Representations
	Objectives
	Learning mechanisms
	Conceptual systems
	Hacking
	Developmental phenomena
	Final thoughts

	List Functions
	References

