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Abstract

For humans, learning abstract concepts and learning
language go hand in hand: we acquire abstract knowl-
edge primarily through linguistic experience, and ac-
quiring abstract concepts is a crucial step in learning
the meanings of linguistic expressions. Number knowl-
edge is a case in point: we largely acquire concepts such
as seventy-three through linguistic means, and we can
only know what the sentence “seventy-three is more
than twice as big as thirty-one” means if we can grasp
the meanings of its component number words. How do
we begin to solve this problem? One approach is to es-
timate the distribution from which sentences are drawn,
and, in doing so, infer the latent concepts and relation-
ships that best explain those sentences. We present early
work on a learning framework called Latent Predicate
Networks (LPNs) which learns concepts by inferring
the parameters of probabilistic context-sensitive gram-
mars over sentences. We show that for a small frag-
ment of sentences expressing relationships between En-
glish number words, we can use hierarchical Bayesian
inference to learn grammars that can answer simple
queries about previously unseen relationships within
this domain. These generalizations demonstrate LPNs’
promise as a tool for learning and representing concep-
tual knowledge in language.

Introduction
Although concept learning and language acquisition have
typically been treated as distinct problems in AI, linguis-
tics and cognitive development, they are strongly coupled
for a child learning to understand language. More gener-
ally, people learn many abstract concepts primarily through
language even though understanding language depends on
understanding the underlying concepts. Research in concept
learning is often focused on concepts grounded in perceptual
features, and while it is almost certainly true that many con-
cepts are learned via generalization from concrete examples,
some concepts cannot be learned this way.

Number concepts are a good example: children do not
learn about the meaning of “seventy five” by seeing exam-
ples of seventy five things; they do not know that “seventy
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five” is more than “twenty five” because of their percep-
tual experiences of these quantities. Rather, children learn
the meaning of “seventy five” (or “a billion and five”) by
noticing how number words are used in language, in count-
ing sequences, in arithmetic exercises, etc. Other good ex-
amples of such abstract concepts are kinship and social re-
lations (e.g. “my father in law’s grandmother”), temporal re-
lations (“the day after last Thanksgiving.”), and spatial rela-
tions (“above and just to the left of”).

Such concepts share many of the properties of language
syntax: they are unbounded in number, they derive their
meanings via composition, and, although people only ever
say, hear, or read about a small number of them, they are
able to reason correctly about any them. There seems to be
a grammar to these concepts, and grasping this grammar
is critical to understanding their meanings and how to use
them. This motivates our approach here, which is to apply
the tools of probabilistic grammars more familiar from stud-
ies of syntax to the problem of concept aquisition.

Doing so requires overcoming some technical barriers.
First, whereas context-free grammars are suitable for de-

scribing large swathes of language syntax, the grammars of
concepts are not context-free. To address this, we use Range
Concatenation Grammars, a context-sensitive grammar for-
malism – one of several developed within linguistics – and
extend this formalism to a probabilistic model of sentences.

Second, the categories of syntax – the nonterminals of the
grammar – are often assumed to be known to children in-
nately and given to automated learners by human experts.
The categories that underlie conceptual knowledge, on the
other hand, are far more numerous, vary from domain to
domain, and are unlikely to be known to the learner. This
motivates our use of latent predicates that, through learning,
assume the role of a domain’s underlying concepts (in the
number domain, these might correspond to the concepts of
successorship, order of magnitude, magnitude comparison,
exact vs. approximate, etc.).

Finally, inducing probabilistic context-sensitive gram-
mars with latent predicates threatens to be intractable: our
goal is to find a middle ground between expressivity and
tractability. Using PRISM (Sato and Kameya 2001) – a
probabilistic logic programming system that naturally im-
plements efficient dynamic programming algorithms for our
models – we are able to explore which domains and which
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S

A1 A2 AK
. . .

w1 w2 wm. . .

∀i, j, k ∈ [1,K]; ∀a, b ∈ [1,m]
S(XY )← A1(X,Y ).
Ai(XY,UV )← Aj(X,Y ), Ak(U, V ).
Ai(XY,UV )← Aj(X,U), Ak(Y, V ).
Ai(XY,UV )← Aj(X,U), Ak(V, Y ).
. . .
Ai(wa, wb).
m = |T |,K = |N \S|,A(Ai) = 2,A(S) = 1

Figure 1: The architecture and rules of a schematic LPN.

grammar architectures are a good fit for this grammar-based
approach.

The rest of this paper describes early work on this ap-
proach. First, we present Latent Predicate Networks (LPNs),
our probabilistic model of concept learning. Then, we de-
scribe our approach to inference and its implementation in
PRISM. Finally, we present preliminary experimental re-
sults in the domain of number concept learning that demon-
strate the promise of this approach.

Latent Predicate Networks
An LPN is a hierarchical Bayesian model of strings extend-
ing the Hierarchical Dirichlet PCFG model (HD-PCFG) to
Probabilistic Range Concatenation Grammars (PRCGs).

Probabilistic Range Concatenation Grammars
Range Concatenation Grammars (RCGs) are a class of string
grammars that represent all and only those languages that
can be parsed in time polynomial in the length of the target
string (Boullier 2005). An RCG G = (N,T, V, P, S) is a
5-tuple where N is a finite set of predicate symbols, T is a
set of terminal symbols, V is a set of variable symbols, P is
a finite set of M ≥ 0 clauses of the form ψ0 → ψ1 . . . ψM ,
and S ∈ N is the axiom. Each ψm is a term of the form
A(α1, . . . , αA(A), where A ∈ N , A(A) is the arity of A,
and each αi ∈ (T ∪ V )∗ is an argument of ψm. We call the
left hand side term of any clause the head of that clause and
its predicate symbol is the head predicate.

A string x is in the language defined by an RCG if one
can derive S(x). A derivation is a sequence of rewrite steps
in which substrings of the left hand side argument string are
bound to the variables of the head of some clause, thus de-
termining the arguments in the clause body. If a clause has
no body terms, then its head is derived; otherwise, its head
is derived if its body clauses are derived.1

We extend RCGs to PRCGs by annotating each clause
Ck ∈ P with probabilities pk such that for all predicates
A ∈ N, ∑k:head(Ck)=A pk = 1. A PRCG defines a distribu-
tion over strings x by sampling from derivations of S(x) ac-
cording to the product of probabilities of clauses used in that
derivation. This is a well defined distribution as long as no

1This description of the language of an RCG technically only
holds for non-combinatory RCGs, in which the arguments of body
terms can only contain single variables. Since any combinatory
RCG can be converted into a non-combinatory RCG and we only
consider non-combinatory RCGs here, this description suffices.

probability mass is placed on derivations of infinite length;
in this paper, we only consider PRCGs with derivations of
finite length, so we need not worry about this requirement.
See Figure 2a for an example of the context-sensitive 2-copy
language {ww |w ∈ {a, b}+} as a PRCG.

Generic Architecture
An LPN is a PRCG with the following generic architec-
ture: the axiom of an LPN is a unary predicate S, and it
has K densely connected binary predicates {Ak}Kk=1 (Fig-
ure 1). For each latent predicate Ak, we define rules such
that Ak(wa, wb) is true for each possible pair of terminals,
wa, wb ∈ T . T may include the empty string ε, but we do not
allow latent predicates of the formAk(ε, ε): see Section . We
also define rules such thatAk(XY,UV ) is true for each pos-
sible pair of predicates, Ai, Aj , and every possible ordering
of the variablesX,Y, U and V acrossAi andAj . Finally, we
define S(XY ) to be the concatenation of the two arguments
of A1(X,Y ).

Learning Model
Given a collection of predicates, {Ak}Kk=1, and a distribu-
tion over clauses, {~wAk

}, the learning task is to model a set
of utterances, {xj}Jj=1, as being generated according to the
following distribution:

~wAk
∼ Dir(~αAk

)

xj ∼
iid
pPRCG(S(xj) | {wAk

})

p({~wAk
} | ~x, {~αAk

}) ∝∏
j

pPRCG(xj |{~wAk
})

∏
Ak

pDIR(~wAk
| ~αAk

)

In words, the weights of clauses sharing head predicate
Ak are drawn from a Dirichlet distribution defined by ~αAk

.
Sentences xj are then drawn from the resulting PRCG.

Bayesian inference over stochastic grammars and stochas-
tic logic programs has been an active area of research in
recent decades (Muggleton 2000; Cussens 2001; Liang et
al. 2007; Goldwater, Griffiths, and Johnson 2006; Johnson,
Griffiths, and Goldwater 2006). Variational inference is a
popular approach in this domain and the one we adopt here.
As explained in the next section, we implemented inference
by translating LPNs into PRISM programs and using its
built-in Variational Bayes Expectation-Maximization algo-
rithm (Sato, Kameya, and Kurihara 2008).

Implementation
LPNs can be encoded as a restricted subclass of PRISM pro-
grams; this is very similar to how PCFGs are encoded in
PRISM (Lloyd et al. 2000). See Figure 2 for an example.
A general probabilistic logic programming system based on
PROLOG, PRISM provides built-in predicates for proba-
bilistic execution and Bayesian inference over logic pro-
grams with stochastic choices. There are several restrictions
placed on PRISM programs to maintain the validity of their
probabilistic interpretation. Most importantly, derivations of
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1) A(a, a) :: 0.25.
2) A(b, b) :: 0.3.
3) A(X a, Y a)← A(X, Y) :: 0.25.
4) A(X b, Y b)← A(X, Y) :: 0.2.

(a)
values(‘A’, [1, 2, 3, 4],

[0.25, 0.30, 0.25, 0.20]).

reduce(‘A’-[[a],[a]],1).

reduce(‘A’-[[b],[b]],2).

reduce(‘A’-[A2,B2],3) :- lpn(‘A’-[X,Y]),

append(X,[a],A2), append(Y,[a],B2).

reduce(‘A’-[A2,B2],4) :- lpn(‘A’-[X,Y]),

append(X,[b],A2), append(Y,[b],B2).

lpn(P-IN) :- reduce(P-IN,V), msw(P,V).

(b)

Figure 2: Possible encodings of the 2-copy language
{ww |w ∈ {a, b}+} as (a) an LPN, (b) a PRISM program.

a probabilistic predicate cannot contain cycles. Because we
disallow Ai(ε, ε) as a valid clause, every term in the body of
a clause has shorter arguments than the head, giving acyclic
and finite derivations.

Experiment
To evaluate LPNs as a probabilistic model of concept acqui-
sition, we trained an LPN with 4 latent predicates on a set of
sentences expressing successor and predecessor relations in
numbers between one and ninety-nine. The training set was
the collection of sentences

X = {[after | before] 〈n〉 comes 〈n+ 1〉 |n ∈ 1, . . . , 99},
where 〈n〉 is the number word corresponding to n. The lexi-
con was the set of number word corresponding to 1 through
19, the decades 20, . . . , 30, the empty string, and the words
“before” and “after.” It is not difficult to manually work out
an LPN that describes this limited domain of sentences; see
Figure 3, for a possible LPN derivation of an example sen-
tence.

Although it is difficult to know how common these kinds
of sentences are in child-directed speech, words for small
numbers are far more common than words for larger ones
(MacWhinney 2000). On the other hand, children learning
to count to large numbers rehearse the sequence. To approx-
imate this distribution of evidence, we drew these sample
sentences from a sum of a geometric distribution with pa-
rameter 0.5 and a uniform distribution. These components
were weighted 75% and 25%, respectively. We drew 2000
examples from this distribution, holding out the sentences in
Table 2 for evaluation.

For inference, we used default 1
D pseudocounts (where

D is the dimensionality of the Dirichlet distributions). We
found that different random initialization for this experiment
did not lead to qualitatively different results, though further
investigation will be necessary to see how robust the algo-
rithm is to local maxima when fitting LPNs.

We evaluated the learned model by asking for Viterbi
(i.e. maximum a posteriori) completions of the last words
of each held out test sentence. Table 2 shows these comple-
tions. The grammar correctly learns much of the structure of
these sentences, including the difference between sentences
starting with “before” and “after” and the edge cases that
relate decade words like “twenty” to non-decade words like
“twenty one.”

S(X Y)←A1(X, Y) : 1.0000

A1(X Y, U V)←A2(X, U), A3(V, Y) : 0.5002

A1(X Y, U V)←A3(Y, V), A4(X, U) : 0.3428

A1(X Y, U V)←A1(V, Y), A4(X, U) : 0.0796

A1(X Y, U V)←A1(Y, V), A2(X, U) : 0.0712

A1(X Y, U V)←A2(Y, X), A3(V, U) : 0.0021

A1(X Y, U V)←A1(V, Y), A2(X, U) : 0.0013

A1(X Y, U V)←A2(V, X), A3(Y, U) : 0.0008

A1(X Y, U V)←A1(X, U), A2(V, Y) : 0.0008

A1(X Y, U V)←A1(X, U), A2(Y, V) : 0.0008

A1(X Y, U V)←A1(X, U), A4(Y, V) : 0.0004

A2(before, comes) : 0.7316 A4(after, comes) : 0.9990

A3(one, two) : 0.3993 A3(two, three) : 0.2063

A3(three, four) : 0.1093 A3(four, five) : 0.0734

A3(five, six) : 0.0502 A3(six, seven) : 0.0355

A3(eight, nine) : 0.0290 A3(seven, eight) : 0.0271

A2(fifty, fifty) : 0.0375 A2(thirty, thirty) : 0.0361

A2(eighty, eighty) : 0.0339 A3(null, one) : 0.0231

A2(forty, forty) : 0.0332 A2(twenty, twenty) : 0.0310

A2(seventy, seventy) : 0.0296 A2(sixty, sixty) : 0.0274

A2(ninety, ninety) : 0.0260 A3(eighteen, nineteen) : 0.0064

A3(sixteen, seventeen) : 0.0049 A3(eleven, twelve) : 0.0044

A3(nine, ten) : 0.0044 A3(thirteen, fourteen) : 0.0044

A3(fourteen, fifteen) : 0.0039 A3(ten, eleven) : 0.0034

A2(null, fifty) : 0.0043 A3(eighty, null) : 0.0030

A3(seventeen, eighteen) : 0.0030 A3(nine, sixty) : 0.0025

A2(nine, seventy) : 0.0029 A3(nine, forty) : 0.0020

A2(null, thirty) : 0.0022 A2(nine, ninety) : 0.0022

A3(twelve, thirteen) : 0.0015 A3(fifteen, sixteen) : 0.0015

A3(null, comes) : 0.0010 A2(twenty, after) : 0.0014

A2(sixty, before) : 0.0007 A3(nineteen, comes) : 0.0005

A4(nine, thirty) : 0.0010

Table 1: The 4 predicate LPN trained to model sentences
in the number domain. Rules with insignificant weights are
removed. This LPN generates the completions in Table 2.

To inspect visually the learned grammar, we thresholded
rules according to the expected number of times they were
used in parsing the training dataset. Table 1 shows all rules
with expected count above 1e − 6. This reduces from 2669
to 52 the number of significant rules. On inspection, predi-
cate A2 forms “before” sentences, predicate A4 forms “af-
ter” sentences, predicate A3 is successorship recursively de-
fined over the decades and ones, and predicate A2 is a cate-
gory for the decade words.

Our LPN does not learn to how to transition between the
last word in a decade and the next decade (e.g. “seventy
nine” to “eighty”). Instead, it makes the intuitively reason-
able generalization that “seventy nine” should be followed
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Question K = 4

after twenty comes ? twenty one X
after forty five comes ? forty six X
after forty seven comes ? forty eight X
after forty nine comes ? forty ten ×
after fifty nine comes ? fifty ten ×
after sixty one comes ? sixty two X
after sixty three comes ? sixty four X
after sixty four comes ? sixty five X
after sixty five comes ? sixty six X
after sixty nine comes ? sixty ten ×
after seventy three comes ? seventy four X
after seventy nine comes ? seventy ten ×
after ninety five comes ? ninety six X
before twenty three comes ? twenty two X
before thirty comes ? thirty eighty ×
before thirty eight comes ? thirty seven X
before forty one comes ? forty X
before fifty three comes ? fifty two X
before sixty eight comes ? sixty seven X
before seventy two comes ? seventy one X
before seventy three comes ? seventy two X
before eighty five comes ? eighty four X
before ninety two comes ? ninety one X
before ninety three comes ? ninety two X
before ninety five comes ? ninety four X

Table 2: Viterbi completions of held-out sentences to evalu-
ate an LPN with four latent predicates in the number domain.
The LPN achieves an accuracy of %80.

by “seventy ten.”

Discussion
Though simple, the knowledge learned by LPNs in the num-
ber domain we explore in this paper goes beyond the ex-
pressive capacity of PCFGs and HMMs, and yet it avoids
intractability by using a restricted formalism. The human
ability to learn abstract concepts must also rely on such a
compromise, and it remains to be seen to what extent LPNs
can model this ability.

This work leaves many open questions. What domains
of concepts are amenable to being represented and learned
by LPNs? Can multiple and varied systems of concepts be
learned at once? Perhaps most importantly, are there generic
architectures for LPNs that allow a larger number of predi-
cates without an insurmountable blow-up in the number of
rules? One idea which we are pursuing is using layered con-
nectivity, much like neural networks, to limit the number of
rules in which each predicate participates.

Many of the algorithms and formalisms used here were
originally developed for use in other closely related areas,
including logic programming and semantic parsing. Seman-
tic parsing, in particular, seems especially related to the chal-
lenge we face here of jointly learning meaning and struc-
ture from sentences (Berant et al. 2013; Liang, Jordan, and
Klein 2013; Kwiatkowski et al. 2010; Poon and Domin-
gos 2009). Semantic parsing, however, tends to frame this

S(after twenty five comes twenty six)
S(XY ) ← A1(X, Y ).

A1(after twenty five, comes twenty six)
A1(XY,UV ) ← A2(X,U), A3(Y, V ).

A2(after, comes). A3(twenty five, twenty six)
A3(XY,UV ) ← A4(X,U), A5(Y, V ).

A4(twenty, twenty). A5(five, six).

Figure 3: A possible parse of the sentence “after twenty five
comes twenty six” using a 5-predicate LPN.

challenge slightly differently than we do here, namely, by
asking how utterances can be mapped to an explicit inter-
nal logical language. By contrast, we focus here on systems
where meaning and structure seem inseparable. Understand-
ing how these two approaches relate and inform one another
is an interesting and open question.
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