
Précis of The child as hacker: Building more human-like models of learning

Joshua S. Rule

2020, Massachusetts Institute of Technology, Department of Brain and Cognitive Sciences

C
ognitive development is central to human cognition. People master an unparalleled cog-

nitive repertoire, building on a limited set of core cognitive abilities to construct intuitive

and formal theories, master natural languages, acquire complex perceptual and motor abilities,

develop intrapersonal and interpersonal social skills, and cultivate capacities for creative expres-

sion. Human-like performance seems substantially beyond current artificial intelligence in all of

these domains, yet people essentially acquire these abilities simultaneously and universally given

appropriate experience. People also learn how to learn, developing general strategies for rapidly

adapting to novel situations. The right kinds of practice can even lead them to develop world-class

expertise and discover new ideas that radically alter humanity’s understanding of the world. How

do we get so much from so little so quickly?

Many of our best models treat learning as analogous to computer programming because symbolic

programs provide the most compelling account of sophisticated mental representations, a modern

formulation of Fodor’s Language of Thought (LOT; Fodor, 1975) as something like a programming

language. Learning then becomes programming, forming computational expressions that encode

knowledge—for instance, composing computational primitives like CAUSE, GO, and UP to form

LIFT (Siskind, 1996) or discovering simple procedures for counting (Piantadosi et al., 2012).

This dissertation extends the idea of learning as programming by hypothesizing that learning

from childhood onward is analogous to the specific ways that people make programs better. I

call this distinctively human style of programming hacking, emphasizing the way that people weave

together activities, values, and goals to rapidly improve programs. For example, hackers’ techniques

can vary from tuning parameters in existing programs to developing entire new languages; their

values can range from efficient resource management to the unabashed pursuit of novelty and fun;

1

and their goals can span a single subroutine or an entire codebase. This child as hacker hypothesis is

important because it identifies a key source of inductive constraints on learning (formatting mental

representations as program-like structures) and an abundant supply of concrete hypotheses about

how these constraints impact learning (the programming practices of actual hackers) that can be

applied to go beyond simpler models of learning and better understand cognitive development.

This dissertation also combines computational and behavioral approaches to formalize and

test these ideas. It reports a large-scale empirical study of human and machine concept learning

involving 250 concepts, nearly 400 people, and five classes of computational models. As part of

this effort, I develop several useful tools. First, I develop a computational model of learning that

embodies core features of hacking. Second, I introduce a novel behavioral tool in the form of list

functions, a domain well-suited to studying inference mechanisms in learning. Third, I introduce a

benchmark set of 250 list functions to focus the present investigation and support future research.

The study contrasts two accounts of learning. The first explains learning primarily in terms

of simplicity measures like description length (Feldman, 2000; Feldman, 2003; Chater & Vitányi,

2003). It argues that learning is similar to random guessing, generating hypotheses largely inde-

pendently of data. The more complex a concept is, the more difficult it is to guess, and the more

difficult it will be to learn. The second explains learning as hacking: learners carefully observe data

and use structured activities to revise them into better theories of themselves. For example, the

internal structure of the list [1, 2, 3, 4, 5, 6] suggests that it was generated using a count routine,

while [5, 2, 5, 2, 5, 2] implies copying or repetition. Like hacking, these insights rely on: 1) carefully

observing data (e.g. each item in the first list is one larger than the previous item); and 2) drawing

structured inferences from those observations (e.g. the list was likely generated by counting to 6).

This kind of constructive thinking (Xu, 2019; Lombrozo, 2019) is largely absent in simplicity-based

models but present in a model of learning as hacking. This model outperforms alternative models

both in explaining human learning and in raw performance. These results suggest that people may:

1) dissociate the constructive inferences involved in learning a concept from the representation of

the concept itself; and 2) search over the space of inferences rather than the space of represen-

tations. These findings are more generally notable because they show that the analogy between

learning and hacking productively contributes to our understanding of conceptual development.

2

Logic first-order, modal, deontic logic
Mathematics number systems, geometry, calculus
Natural language morphology, syntax, number grammars
Sense data audio, images, video, haptics
Computer languages C, Lisp, Haskell, Prolog, LATEX
Scientific theories relativity, game theory, natural selection
Operating procedures Robert’s Rules, bylaws, checklists
Games & sports Go, football, 8 queens, juggling, Lego
Norms & mores class systems, social cliques, taboos
Legal codes constitutions, contracts, tax law
Religious systems monastic orders, vows, rites & rituals
Kinship genealogies, clans/moieties, family trees
Mundane chores knotting ties, making beds, mowing lawns
Intuitive theories physics, biology, theory of mind
Domain theories cooking, lockpicking, architecture
Art music, dance, origami, color spaces

(a) (b)

(c)

(d) (e)

(f) (g)

Table 1 & Figure 1: Domains requiring algorithmic knowledge: (a) construction plans; (b) assembly instructions; (c)
musical notation; (d) knots (e) juggling patterns; (f) graphical proofs; and (g) football.

The child as hacker1

The first chapter in this dissertation reviews the idea of learning as programming, which holds

that symbolic programs provide the best formal knowledge representation we have. A critical

mass of work throughout cognitive science has converged on the hypothesis that human learning

operates over structured (Fodor, 1975; Fodor & Pylyshyn, 1988), probabilistic (Lake et al., 2017;

Goodman et al., 2015), program-like (Turing, 1936; Baum, 2004) representations. While there

have been many other proposals for modeling conceptual representations, only programs arguably

capture the full breadth and depth of people’s algorithmic abilities (Goodman et al., 2015). Code

can model both procedural and declarative information and allow them to interact seamlessly.

Universal programming languages integrate all this knowledge into a single formal representation.

Programs can also be communicated in many forms, including not only formal code but forms

familiar in all cultures, such as natural language (e.g. If you want to X, first you need to Y, then

try to Z, but if that fails. . . ; Lupyan & Bergen, 2016), images, and diagrams (Table 1 & Figure 1).

If knowledge is code, learning is then program induction—discovering programs that explain

how observed data were generated (Kitzelmann, 2009; Flener & Schmid, 2008; Gulwani et al.,

2017). This technique draws on literature stretching back to the birth of cognitive science (Newell

et al., 1958; Newell et al., 1959), across many formalizations of learning, e.g. deep learning (LeCun

1The research in this section appears in the literature as Rule, J. S., Piantadosi, S. T., & Tenenbaum, J. B. (2020).
The child as hacker. Trends in Cognitive Sciences.

3

et al., 2015), connectionism (Rumelhart et al., 1987), reinforcement learning (Sutton & Barto,

2018), probabilistic graphical models (Koller & Friedman, 2009), and production systems (Lovett

& Anderson, 2005). Learning as programming is importantly different, however, in providing

learners the full expressive power of symbolic programs both theoretically (i.e. Turing completeness)

and practically (i.e. freedom to adopt any formal syntax). This approach aligns with rational

constructivist models of development (Xu, 2019; Gopnik & Wellman, 2012) and applies broadly to

developmental phenomena (e.g. Siskind, 1996; Goodman et al., 2008; Ullman et al., 2012; Piantadosi

et al., 2012; Lake et al., 2015; Amalric et al., 2017; Ullman et al., 2018).

Figure 2: Overview of the child as hacker hypothesis. Code
can be changed using many techniques (x-axis) and as-
sessed according to many values (y-axis). Standard learn-
ing models in machine learning and psychology (green re-
gion) tend to focus solely on tuning the parameters of sta-
tistical models to improve accuracy. Recent LOT mod-
els (red region) expand this scope, writing functions in
program-like representations and evaluating them for con-
ciseness and sometimes efficiency. Yet, the set of values
and techniques used by actual hackers (and by hypothesis,
children; blue region) remains much larger.

Despite its successes, much work remains

to develop learning as programming into a

robust account of children’s learning. Most

real-world problems requiring program-like so-

lutions are complex enough that there is no

single metric of utility nor unified process

of development. Modern computational ap-

proaches to learning—whether standard learn-

ing algorithms or more recent LOT models—

use far fewer techniques and values than hu-

man programmers. Doing justice to learning as

programming—both in what it means to learn

and in what it means to program—requires go-

ing beyond current approaches (Figure 2). The

second chapter in this dissertation enriches

learning as programming with a distinctly hu-

man style of programming called hacking. As

used here, hacking is about making code better.

It adopts all the values that make code better,

the many techniques people use to improve code, and a profound sense of internal motivation.

There are many dimensions along which hackers seek to improve their code, making it not only

more accurate, but perhaps faster, clearer, cleverer, more modular, more memory-efficient, and so

4

on. The simplest program is unlikely to be the most general; the fastest is usually not the easiest to

write. Real world systems do not focus exclusively on the metrics that have come to the forefront of

current LOT-learning paradigms. Alongside accuracy and simplicity, hackers also consider values

related to resource use, intrinsic reward, aesthetic concerns, and complexity management.

Hackers have developed many process-level mechanisms for improving code according to these

values (Fowler, 2018), including adding new functions and data structures, debugging faulty code,

refactoring working code, and even inventing new languages. Hackers understand dozens, even

hundreds, of these mechanisms and their potential impacts; most are specially tailored to specific

kinds of problems. A hacker might care about speed and so cache the output of subcomputations

in an algorithm, or she might seek modularity and so define data structures that encapsulate

information and make it accessible through specific interfaces. This diversity of techniques makes

hacking different from both common learning algorithms and recent LOT models. These other

models typically explore a small set of mechanisms based on simple local methods like gradient

descent, random sampling, or exhaustive enumeration.

Hacking is intrinsically motivated. Though a hacker may often be motivated in part by an

extrinsic goal, she always generates her own goals—choosing specific dimensions she wants to

improve—and pursues them at least as much for the intrinsic reward of better code as for any

instrumental purpose. Whatever their origins, her choice of goals often appears spontaneous, even

stochastic, constantly updated in light of recent changes to her code. Rather than randomly walk-

ing from goal to goal, however, she learns to maintain a network of goals. Even if she eventually

achieves her initial goal, the path she follows may not be the most direct available. Her goals are

thus primarily a means to improve her code rather than ends in themselves.

Hacking thus represents a collection of epistemic values and practices adapted to organizing

knowledge using programs, and there is growing evidence that programs are a good model of mental

representations. The child as hacker combines these ideas into a roadmap toward a computational

account of learning and cognitive development. It is compatible with other core developmental

metaphors—including the child as scientist (Piaget, 1955; Carey, 2009; Schulz, 2012b; Gopnik,

2012) and the evolutionary metaphor (Siegler, 1996; see also Siegler & Jenkins, 1989)—and, like

them, makes testable claims about human learning. For example, it identifies a general class

of inductive biases humans ought to have—namely those related to synthesizing, executing, and

5

analyzing information as programs. It also concretely identifies the representations, objectives, and

processes supporting learning with those of human hackers. The rest of the dissertation tests these

ideas in a large-scale study of human and machine concept learning in the domain of list functions.

New tools for investigating human learning

the list [8, 2, 7, 0, 3]

(λ xs [8, 2, 7, 0, 3])

[1, 4, 23, 21] → [8, 2, 7, 0, 3]
[60, 7] → [8, 2, 7, 0, 3]
[8, 67, 54, 54, 97] → [8, 2, 7, 0, 3]
[3, 3, 6, 55, 63, 7] → [8, 2, 7, 0, 3]
[29] → [8, 2, 7, 0, 3]

add the index to every element

(λ xs (mapi + xs))

[2, 0, 92, 21, 33] → [3, 2, 95, 25, 38]
[7, 51, 94, 72, 88, 19] → [8, 53, 97, 76, 93, 25]
[75, 32, 46, 71, 49, 60] → [76, 34, 49, 75, 54, 66]
[10, 12, 11, 8, 9, 7] → [11, 14, 14, 12, 14, 13]
[52, 87, 27, 25] → [53, 89, 30, 29]

keep only elements followed by an even number

(λ xs (map first

(filter (λ y (is_even (second y)))

(zip (droplast 1 xs)

(drop 1 xs)))))

[29, 88, 44, 75, 5, 17, 36, 0, 89, 31] → [29, 88, 17, 36]
[54, 4, 7, 43, 8, 97, 25, 5, 0] → [54, 43, 5]
[24, 41, 96, 14, 93, 47] → [41, 96]
[19, 81, 1, 53, 85, 3, 97] → []
[3, 76, 20, 11, 86, 8, 5, 94] → [3, 76, 11, 86, 5]

Figure 3: Three example list functions of varying difficulty.
Each example gives an English gloss, a working program
in a domain-specific lambda-calculus developed in the dis-
sertation, and several input → output examples.

The third and fourth chapters of this disser-

tation develop novel behavioral and computa-

tional tools for investigating the child as hacker

empirically. The third chapter identifies the

domain of list functions—computable functions

over lists of natural numbers—as a prime tar-

get for studying the child as hacker hypothe-

sis empirically (Figure 3). This domain has a

long history in artificial intelligence (Green et

al., 1974; Shaw et al., 1975; Biermann, 1978;

Green, 1981; Smith, 1984; Feser et al., 2015;

Osera & Zdancewic, 2015; Polikarpova et al.,

2016; Cropper et al., 2019) but is virtually un-

studied in cognitive psychology. It is psycholog-

ically interesting, however, because it combines

many of the best properties of classic concept

learning domains. It is familiar and engaging

to learners in numerate societies, who can draw

on meaningful background knowledge about numbers and sequences. List functions also support

multiple tasks requiring different kinds of reasoning (e.g. learning functions from input/output

pairs, generating new functions, generating input/output pairs to teach someone a function). Both

lists and numbers have internal structure over which many relations can be defined. These features

combine to support broad variance in problem difficulties. Many concept learning domains are ei-

ther formally tractable but computationally simple, such as Boolean concepts, or computationally

6

sophisticated but formally challenging, such as visual analogies. List functions are both formally

tractable and computationally sophisticated. The domain decomposes into a small set of meaningful

primitives but is also Turing-complete and naturally supports the full range of human computa-

tional abilities. Many well-studied cognitive psychology tasks can be naturally represented as list

function tasks, such as: Give-a-Number, How-Many, 2-4-6, the Number Game, sequence prediction,

text-based analogy, Boolean concept learning, sorting/seriation, and small number addition.

Perhaps the most exciting feature of list functions, however, is the potential they have to

illuminate human learning. Suppose we were trying to learn a list function from the following data:

[88, 93, 73, 54, 79] → [88, 1, 93, 2, 73, 3, 54, 4, 79, 5]

[11, 0, 85, 98] → [11, 1, 0, 2, 85, 3, 98, 4]

[62, 53, 21] → [62, 1, 53, 2, 21, 3]

The first thing we might notice is that the inputs and outputs both begin with the same elements.

Further examination might show that all the elements of the input appear in the output and in the

same order. We might then see that the input elements are not the only elements in the output;

they do not even appear consecutively. They are instead mixed with many other elements. We

might then reconceptualize our examples as something like this, clearly marking the new elements:

[88, 93, 73, 54, 79] → [88, 1, 93, 2, 73, 3, 54, 4, 79, 5]

[11, 0, 85, 98] → [11, 1, 0, 2, 85, 3, 98, 4]

[62, 53, 21] → [62, 1, 53, 2, 21, 3]

This reframing shows exactly one additional element in the output for each input element. These

input elements and the new elements occur in pairs, and the order of the new elements is consistent.

We might then notice that the new elements are drawn in order from the count list, a familiar

numerical sequence. The function appears to interleave the count list and the input list, effectively

placing the index of each element in the input after its occurrence in the output. What is remarkable

is how we are able to bring all these observations to bear during the process of learning. It suggests

a process very unlike the unstructured curve fitting of many statistical models or the guess-and-

check of many models of learning in an LOT. It is instead reminiscent of the way hacking weaves

together activities and values to improve code.

7

The fourth chapter describes HL, a computational model of inductive learning designed to

embody core aspects of hacking. HL is interesting because each facet of the model’s architecture—

including its representations, objectives, and learning mechanisms—interprets some phenomenon of

human learning through the lens of hacking. This allows HL to address richer aspects of cognition

generally ignored in previous learning as programming models. For example, HL models learning

as the development of an entire programming language similar to the way that humans develop

conceptual systems (Gopnik, 1983; Carey, 1985, 2009). It also uses complex objective functions

that vary based on the task at hand. These objectives allow it to avoid premature optimization,

exploring suboptimal and even known-to-be-wrong hypotheses during search while favoring the

best hypotheses during later decision-making (Schulz, 2012a). They also also implement a sort of

queried-guided search (Chu et al., 2019), using high-level information about the task to rule out

syntactically well-formed but semantically inappropriate hypotheses.

Perhaps most importantly, however, is the way that HL restructures search. Most existing

models of learning in the LOT directly compose a program-like mental representation by trying

to correctly guess each constituent symbol. This approach is like observing that “This swan is

white” and “That swan is white” and then proceeding through a series of hypotheses about black

bears, purple elephants, and tangerine pangolins before eventually arriving at something like “All

swans are white”. Humans, by contrast, induce a conclusion about white swans precisely because

the premises are about white swans. We are sensitive to the information in the data and use it

directly. This might seem intuitive, but it is not how traditional models of learning in the LOT

operate. It is however, similar to how HL works. Its search mechanism is based on the idea

that people possess mechanisms for thinking about structures they observe in the world as mental

programs and for iteratively revising those programs using specific inference rules. Each inference

rule encapsulates a computational pattern for transforming mental programs. Rather than directly

composing programs from primitives, learners compose inferences that produce programs as output.

HL thus performs a sort of constructive learning (Xu, 2019; Lombrozo, 2019) that enables it to

rapidly learn certain kinds of complex concepts.

8

0.0

0.2

0.4

0.6

0.8

1.0

M
ea

n
A

cc
ur

ac
y

0
1
2
3
4
5
6
7
8
9

10
11

c1
02

c1
70

c1
21

c0
45

c0
72

c1
51

c0
80

c0
61

c1
89

c0
50

c0
48

c1
47

c1
20

c1
27

c1
00

c1
45

c0
79

c0
43

c0
38

c0
42

c2
23

c1
37

c2
38

c1
08

c1
26

c1
87

c0
22

c2
12

c1
01

c0
21

c1
05

c0
41

c0
70

c0
52

c0
44

c1
90

c0
37

c2
22

c1
07

c0
11

c1
04

c1
92

c1
82

c0
06

c0
46

c1
06

c1
14

c0
93

c1
95

c1
96

c0
95

c0
16

c2
24

c1
16

c1
40

c0
49

c0
71

c1
61

c0
68

c1
03

c0
01

c0
90

c0
97

c1
42

c0
91

c0
34

c2
44

c1
71

c1
72

c0
62

c0
96

c0
81

c1
09

c0
02

c1
32

c1
53

c0
51

c2
25

c0
67

c1
12

c0
30

c1
49

c1
48

c0
17

c0
92

c0
77

c0
98

c2
48

c1
99

c0
07

c1
76

c0
66

c0
53

c0
47

c0
64

c0
78

c1
19

c1
35

c1
98

c2
19

c0
75

c1
77

c0
25

c1
25

c2
11

c0
87

c0
13

c0
69

c1
17

c2
28

c1
97

c0
65

c1
56

c1
10

c2
33

c0
03

c2
30

c1
22

c0
20

c2
35

c1
57

c1
85

c2
13

c1
84

c1
55

c0
82

c2
31

c0
99

c2
47

c0
08

c0
55

c0
29

c1
68

c0
09

c1
33

c1
46

c0
04

c2
40

c2
39

c2
46

c1
38

c0
18

c0
12

c2
32

c0
94

c0
86

c1
93

c0
56

c0
28

c2
20

c2
41

c0
60

c1
69

c0
57

c1
50

c0
33

c2
18

c0
14

c1
36

c0
83

c0
19

c2
03

c1
15

c2
07

c0
88

c0
40

c0
85

c1
11

c0
73

c0
27

c2
34

c1
65

c1
91

c0
26

c0
59

c0
74

c1
73

c1
75

c2
04

c0
31

c2
36

c0
54

c2
27

c0
24

c2
00

c0
10

c1
23

c0
23

c1
94

c2
45

c0
32

c0
58

c1
74

c2
29

c1
62

c0
39

c1
81

c1
63

c1
54

c1
66

c0
84

c2
49

c1
18

c1
52

c2
37

c2
43

c1
88

c1
39

c0
36

c2
01

c2
17

c0
05

c2
09

c0
63

c1
41

c0
89

c1
24

c2
16

c1
43

c2
15

c1
44

c1
28

c2
08

c0
35

c2
14

c1
30

c1
59

c2
05

c0
76

c2
50

c1
86

c2
42

c1
60

c1
67

c2
02

c1
29

c2
21

c1
31

c1
80

c0
15

c1
79

c2
26

c1
34

c1
64

c1
78

c1
13

c2
06

c2
10

c1
58

c1
83

Concept

To
ta

l

Figure 4: Human list function learning performance. (Top): Mean accuracy (y-axis) on each concept (x-axis) in
descending order of mean accuracy, showing between-function variation. Error bars (blue bars) are bootstrapped
95% CIs. (Bottom): For each concept (x-axis), the percentage of participants with each possible number of correct
responses (y-axis), showing within-function variation. Color varies from white (0%) to blue (100%).

Structural sources of difficulty in human concept learning

The fifth and sixth chapters of this dissertation use list functions to test the child as hacker hy-

pothesis empirically. Together, they describe a large-scale behavioral study of concept learning that

contributes to our understanding of both human learning and artificial intelligence.

These chapters specifically explore the question of why people find some concepts harder to

learn than others. Both humans and computational models find simple concepts easier to learn

than complex concepts (Feldman, 2000; and later Goodman et al., 2008; Piantadosi et al., 2016;

Kemp & Tenenbaum, 2008; Kemp et al., 2010; Ullman et al., 2012; cf. Lafond et al., 2007), leading

to arguments that learning difficulty is strongly determined by simplicity (e.g. Feldman, 2003)2. The

child as hacker challenges this idea and suggests that people may be able to learn much faster than

might be predicted by simplicity alone. It predicts that learners rely on a diverse set of specialized

learning mechanisms similar to those used in hacking (Fowler, 2018; Abelson et al., 1996). These

mechanisms perform structured inferences that effectively shrink a learner’s hypothesis space and

thereby speed learning.

The fifth chapter reports a large-scale list function learning experiment testing these hypothe-

2There are at least two places simplicity occurs in discussions of learning. One focuses on the goal of learning and
develops normative arguments about the kinds of concepts that learners should eventually acquire. These are often
based on Occam’s Razor and conclude that learners ought to prefer simple explanations (Chater & Vitányi, 2003;
Baum, 2004). This question isn’t being discussed here. The second, which is under discussion here, focuses on the
process by which learning occurs. It asks the empirical question of whether simpler things are easier to learn than
more complex things.

9

R2 = 0.288

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

Model Mean Accuracy

H
um

an
 M

ea
n

A
cc

ur
ac

y

(a)

R2 = 0.309

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

Model Mean Accuracy

H
um

an
 M

ea
n

A
cc

ur
ac

y
(b)

R2 = 0.39

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

Model Mean Accuracy

H
um

an
 M

ea
n

A
cc

ur
ac

y

(c)

R2 = 0.568

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

Model Mean Accuracy

H
um

an
 M

ea
n

A
cc

ur
ac

y

(d)

Figure 5: Logistic model predictions (x-axis) of mean human accuracy (y-axis) by concept (circles): (a) based
on description length in a rich model LOT; (b) based on the word count of correct participant verbal responses;
(c) based on the word count of standardized verbal glosses; and (d) based on semantic and syntactic features,
including visibility. Concepts examined in the formal model comparison are marked in blue. R2 is variance in human
performance explained by model predictions.

ses in humans. I developed a benchmark set of 250 list functions and taught them to nearly 400

people. These functions ranged from the identity function to complex operations involving condi-

tional, numerical, and recursive reasoning. I followed prior work on Boolean concept learning and

presented data in an online fashion (Piantadosi et al., 2016), asking participants to make predic-

tions after each observation in order to capture trial-by-trial learning and generalization. I found

broad variance in overall performance both across functions and within functions (Figure 4).

I also extracted a series of features based on formal and informal descriptions of each function.

Some features measured a function’s simplicity, including three measures of description length.

Others captured aspects of a function’s semantics, such as the use of conditional or recursive

reasoning, the use of counting knowledge, argument structure, and visibility—a concept introduced

here to measure how transparently each symbol in an LOT expression is encoded in the observed

data. For example, consider the function, f(x) = slice(x, 2, (length(x) - first(x)). It

extracts a slice, or sublist, of the input, x, containing the second through M th elements, where M

is the difference between the length of x and the first element of x. Here, slice and the first use

of x are considered visible. That the output always includes a portion of the input immediately

suggests x is used somewhere. slice is not the only symbol that can extract a sublist, but it is

the most likely to produce non-trivial sublists of the input which excludes both endpoints. The

symbol 2, by contrast, is somewhat less visible, requiring several examples to rule out alternatives

like indexing based on the first element of the list or removing elements failing some test. The term

computing M is hidden. It relies on a complex relationship between the length of the list and an

10

element of the list; while both are directly encoded in the input, the relationship between them is

obscure.

Analyzing the data in terms of these features revealed that while description length has some

predictive value in explaining learning, each symbol’s impact on learning is heavily modulated by

visibility (Figure 5). A function composed of symbols that can be inferred easily from data is much

easier to learn than a function of similar length whose symbols are not as transparently encoded

by input/output data. Moreover, semantic features like the use of recursive reasoning or counting

information also explain significant variation in learning performance independently of visibility.

These results show that humans are strongly sensitive to the semantic content of data and can

leverage it to learn more quickly than expected based on simplicity alone. As such, they provide

empirical support in favor of the child as hacker hypothesis while challenging simpler approaches to

learning in the LOT. I argue that humans may use learning mechanisms which—unlike enumeration

or random sampling—decouple the complexity of learning a concept from the complexity of that

concept’s representation in the LOT. This experiment also introduces a benchmark data set for

understanding human learning that can be used to compare formal theories of concept acquisition

throughout cognitive science.

More human-like models of learning

The sixth chapter compares HL with several alternative computational models of learning in the

LOT. It specifically compares them as explanations of the behavioral data collected in the fifth

chapter. I focused on 100 of the 250 functions tested in humans, selecting concepts that represent a

broad spectrum of algorithmic content while remaining tractable for current learning models. While

HL learns through a diversity of structure-sensitive learning mechanisms, the remaining models

exemplify other common approaches to learning in the LOT. One exhaustively enumerates all

possible hypotheses in order of length. Another stochastically samples from a Bayesian posterior

over hypotheses, favoring those which are short and accurate. A third performs a proof-guided

search, representing the problem as a logical theory whose free variables must be instantiated to

solve the task. The fourth is a form of neural program synthesis, training a deep neural network

on millions of programs and input/output pairs. When given novel data, the trained network

11

HL (Hacker)

Fleet (Stochastic Search)

Metagol (Proof−Guided Search)

Enumeration (Exhaustive)

RobustFill (Neural Program Synthesis)
c0

45
c0

72
c0

80
c0

61
c0

50
c0

48
c1

00
c0

79
c0

43
c0

38
c0

42
c0

22
c0

21
c0

41
c0

70
c0

52
c0

44
c0

37
c0

11
c0

06
c0

46
c0

93
c0

95
c0

16
c0

49
c0

71
c0

68
c0

01
c0

90
c0

97
c0

91
c0

34
c0

62
c0

96
c0

81
c0

02
c0

51
c0

67
c0

30
c0

17
c0

92
c0

77
c0

98
c0

07
c0

66
c0

53
c0

47
c0

64
c0

78
c0

75
c0

25
c0

87
c0

13
c0

69
c0

65
c0

03
c0

20
c0

82
c0

99
c0

08
c0

55
c0

29
c0

09
c0

04
c0

18
c0

12
c0

94
c0

86
c0

56
c0

28
c0

60
c0

57
c0

33
c0

14
c0

83
c0

19
c0

88
c0

40
c0

85
c0

73
c0

27
c0

26
c0

59
c0

74
c0

31
c0

54
c0

24
c0

10
c0

23
c0

32
c0

58
c0

39
c0

84
c0

36
c0

05
c0

63
c0

89
c0

35
c0

76
c0

15

10

30

50

70

90

10

30

50

70

90

10

30

50

70

90

10

30

50

70

90

10

30

50

70

90

Concept

M
ea

n
P

er
fo

rm
an

ce
 (

%
)

Figure 6: Mean accuracy (y-axis) on each concept (x-axis) by model (subplots). Concepts are ordered by mean
human accuracy. Error bars are bootstrapped 95% CIs and gray region is human mean accuracy.

then generates a distribution over hypothesis programs that can be sampled to provide candidate

solutions. Crucially, each model serves as a formal hypothesis about the psychological process

learners go through in completing the list functions task. By comparing their performance, we

have the potential to gain meaningful insight into the way that humans complete this task and,

more generally, how they learn.

Relative to these comparison models, HL better fit human patterns of success and failure both

quantitatively and qualitatively. It predicted human performance significantly more accurately

than the comparison models on a sizable majority of the analyzed functions (Figure 6 & Table 2).

HL was also sensitive to visibility and several other semantic features to roughly the same degree

as humans, while other models strongly diverged from estimates of human sensitivity. In cases

where HL significantly outperformed other models, it heavily relied on features absent in the other

models, such as observing structure in the raw data and iteratively applying a diverse set of learning

mechanisms. Cases where HL differed significantly from humans could be largely explained by a

12

single key difference between HL and humans, namely humans’ significantly more sophisticated

recursive reasoning (Figure 7).

This work provides a direct empirical test of the child as hacker hypothesis, showing that models

embodying its core principles outperform more traditional models of learning in the LOT. These

traditional models rely on symbol-based guess-and-check. Effectively, they make a long series of

guesses about the exact string of symbols needed to describe some concept; each

Non-Zero Best ±5% |Error| < 25%

RobustFill 28 35 33

Enumeration 30 36 30

Metagol 36 36 25

Fleet 64 43 43

HL 81 82 61

0.00

0.25

0.50

0.75

HL Fleet RobustFill Enumeration Metagol
Model

D
iff

er
en

ce
 fr

om
 M

ea
n

H
um

an
 A

cc
ur

ac
y

Recursive Non−Recursive Recursive

Table 2 & Figure 7: Table: A summary of model performance
relative to human learners, including the number of concepts for
which each model gives non-zero performance, the number for
which it is within 5% of providing the closest prediction of hu-
man accuracy, and the number of concepts for which each model’s
absolute error in predicting human performance is greater than
25%. Figure: Differences between mean human accuracy and
mean model accuracy (dots) summarized with a Gaussian ker-
nel density estimate (colored regions). Red dots indicate re-
cursive concepts. The crossbar plots the median with a 95%
bootstrapped CI.

successive guess differs from the previous

one by at most a few symbols. Changes

are at best weakly sensitive to any infor-

mation contained in observed data. By

contrast, the HL model searches a space

of inference procedures in such a way that

successive search steps may represent rad-

ically different hypotheses. It also fre-

quently uses observed data as the basis

for its entire chain of reasoning. HL’s suc-

cess in explaining human learning suggests

that people are sensitive to the structure

of observed data and leverage that struc-

ture during learning. These results are also

deeply connected to empirical work on the

diversity of learning strategies in children

and adults (Siegler, 1996; Siegler & Jenk-

ins, 1989), and we show here that this di-

versity is a better explanation of adult con-

cept learning than models which rely on a

single inference mechanism (e.g. backprop

in deep learning, enumeration, or deduc-

tive proof). Together, these findings sug-

gest that this kind of diversity may be a

13

key factor in the success of human learning generally.

Conclusion

This dissertation proposes and tests novel hypotheses about the computational underpinnings of

human development. It argues that a style of computer programming called hacking plays a critical

role in explaining the flexibility and breadth of learning. It builds on prior work suggesting that

mental representations function like computer programs. In contrast with this work, the dissertation

specifically emphasizes the importance of diversity in representations, objectives, and mechanisms

during learning and hypothesizes that these things operate similarly to the structures, values, and

activities of hacking. It shows how this child as hacker hypothesis could be used to understand

developmental phenomena like the acquisition of declarative theories and mathematical procedures.

This dissertation also introduces list functions as a behavioral domain well suited to studying the

richness of human learning. Consistent with the child as hacker, it finds that people use observed

data to acquire list functions in ways that cannot be predicted from their description length alone.

It also reports that a computational model of learning as hacking better accounts for human learning

than alternative models of learning in the LOT. These results demonstrate that the child as hacker

hypothesis productively contributes to our understanding of development theoretically, empirically,

and computationally.

14

References

Abelson, H., Sussman, G. J., & Sussman, J. (1996). Structure and interpretation of computer
programs. MIT Press.

Amalric, M., Wang, L., Pica, P., Figueira, S., Sigman, M., & Dehaene, S. (2017). The language
of geometry: Fast comprehension of geometrical primitives and rules in human adults and
preschoolers. PLoS Computational Biology. https://doi.org/10.1371/journal.pcbi.1005273

Baum, E. B. (2004). What is thought? MIT Press.
Biermann, A. W. (1978). The inference of regular lisp programs from examples. IEEE transactions

on Systems, Man, and Cybernetics, 8 (8), 585–600.
Carey, S. (1985). Conceptual change in childhood. MIT Press.
Carey, S. (2009). The origin of concepts. Oxford University Press.
Chater, N., & Vitányi, P. (2003). Simplicity: A unifying principle in cognitive science? Trends in

Cognitive Sciences, 7 (1), 19–22.
Chu, J., Gauthier, J., Levy, R., Tenenbaum, J., & Schulz, L. (2019). Query-guided visual search.

Proceedings of the 41st Annual Conference of the Cognitive Science Society.
Cropper, A., Morel, R., & Muggleton, S. H. (2019). Learning higher-order logic programs. arXiv

preprint arXiv:1907.10953.
Feldman, J. (2000). Minimization of Boolean complexity in human concept learning. Nature, 407 (6804),

630–633.
Feldman, J. (2003). The simplicity principle in human concept learning. Current Directions in

Psychological Science, 12 (6), 227–232.
Feser, J. K., Chaudhuri, S., & Dillig, I. (2015). Synthesizing data structure transformations from

input-output examples. ACM SIGPLAN Notices, 50 (6), 229–239.
Flener, P., & Schmid, U. (2008). An introduction to inductive programming. AI Review, 29 (1),

45–62.
Fodor, J. (1975). The Language of Thought. Harvard University Press.
Fodor, J., & Pylyshyn, Z. (1988). Connectionism and cognitive architecture: A critical analysis,

connections and symbols. Cognition, 28, 3–71.
Fowler, M. (2018). Refactoring: Improving the design of existing code. Addison-Wesley Professional.
Goodman, N., Tenenbaum, J., Feldman, J., & Griffiths, T. (2008). A rational analysis of rule-based

concept learning. Cognitive Science, 32 (1), 108–154.
Goodman, N., Tenenbaum, J. B., & Gerstenberg, T. (2015). Concepts in a probabilistic language

of thought. In E. Margolis & S. Laurence (Eds.), The conceptual mind: New directions in
the study of concepts (pp. 623–654). MIT Press.

Gopnik, A. (1983). Conceptual and semantic change in scientists and children: Why there are no
semantic universals. Linguistics, 21 (1), 163–180.

Gopnik, A. (2012). Scientific thinking in young children: Theoretical advances, empirical research,
and policy implications. Science, 337 (6102), 1623–1627.

Gopnik, A., & Wellman, H. M. (2012). Reconstructing constructivism: Causal models, bayesian
learning mechanisms, and the theory theory. Psychological Bulletin, 138 (6), 1085–1108.

Green, C. C., Waldinger, R. J., Barstow, D. R., Elschlager, R., Lenat, D. B., McCune, B. R.,
Shaw, D. E., & Steinberg, L. I. (1974). Progress report on program-understanding systems
(tech. rep. AIM-240). Stanford Artificial Intelligence Laboratory.

Green, C. (1981). Application of theorem proving to problem solving. Readings in artificial intelli-
gence (pp. 202–222). Elsevier.

Gulwani, S., Polozov, O., & Singh, R. (2017). Program synthesis. Foundations and Trends in Pro-
gramming Languages, 4 (1-2), 1–119.

15

Kemp, C., & Tenenbaum, J. B. (2008). The discovery of structural form. Proceedings of the National
Academy of Sciences, 105 (31), 10687–10692.

Kemp, C., Tenenbaum, J. B., Niyogi, S., & Griffiths, T. L. (2010). A probabilistic model of theory
formation. Cognition, 114 (2), 165–196.

Kitzelmann, E. (2009). Inductive programming: A survey of program synthesis techniques. Inter-
national workshop on approaches and applications of inductive programming, 50–73.

Koller, D., & Friedman, N. (2009). Probabilistic graphical models: Principles and techniques. MIT
Press.

Lafond, D., Lacouture, Y., & Mineau, G. (2007). Complexity minimization in rule-based category
learning: Revising the catalog of boolean concepts and evidence for non-minimal rules.
Journal of Mathematical Psychology, 51 (2), 57–74.

Lake, B., Ullman, T., Tenenbaum, J., & Gershman, S. (2017). Building machines that learn
and think like people. Behavioral and Brain Sciences, 40. https : / / doi . org / 10 . 1017 /
S0140525X16001837

Lake, B., Salakhutdinov, R., & Tenenbaum, J. B. (2015). Human-level concept learning through
probabilistic program induction. Science, 350 (6266), 1332–1338.

LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521 (7553), 436–444.
Lombrozo, T. (2019). “learning by thinking” in science and in everyday life. In A. Levy & P.

Godfrey-Smith (Eds.), The scientific imagination (pp. 230–249). Oxford University Press.
Lovett, M. C., & Anderson, J. R. (2005). Thinking as a production system. In K. J. Holyoak & R. G.

Morrison (Eds.), The Oxford handbook of thinking and reasoning (pp. 401–429). Cambridge
University Press.

Lupyan, G., & Bergen, B. (2016). How language programs the mind. Topics in cognitive science,
8 (2), 408–424.

Newell, A., Shaw, J. C., & Simon, H. A. (1959). Report on a general problem solving program.
IFIP Congress, 256, 64.

Newell, A., Shaw, J. C., & Simon, H. A. (1958). Elements of a theory of human problem solving.
Psychological Review, 65 (3), 151.

Osera, P.-M., & Zdancewic, S. (2015). Type-and-example-directed program synthesis. ACM SIG-
PLAN Notices, 50 (6), 619–630.

Piaget, J. (1955). The child’s construction of reality. Routledge & Kegan Paul.
Piantadosi, S., Tenenbaum, J., & Goodman, N. (2012). Bootstrapping in a language of thought: A

formal model of numerical concept learning. Cognition, 123 (2), 199–217.
Piantadosi, S., Tenenbaum, J., & Goodman, N. (2016). The logical primitives of thought: Empirical

foundations for compositional cognitive models. Psychological Review, 123 (4), 392–424.
Polikarpova, N., Kuraj, I., & Solar-Lezama, A. (2016). Program synthesis from polymorphic refine-

ment types. ACM SIGPLAN Notices, 51 (6), 522–538.
Rule, J. S., Piantadosi, S. T., & Tenenbaum, J. B. (2020). The child as hacker. Trends in Cognitive

Sciences.
Rumelhart, D. E., McClelland, J. L., & PDP Research Group. (1987). Parallel distributed processing.

MIT Press.
Schulz, L. (2012a). Finding new facts; thinking new thoughts. Advances in child development and

behavior (pp. 269–294). Elsevier.
Schulz, L. (2012b). The origins of inquiry: Inductive inference and exploration in early childhood.

Trends in Cognitive Sciences, 16 (7), 382–389.
Shaw, D. E., Swartout, W. R., & Green, C. C. (1975). Inferring lisp programs from examples.

IJCAI, 75, 260–267.
Siegler, R., & Jenkins, E. (1989). How children discover new strategies. Erlbaum.

16

Siegler, R. S. (1996). Emerging minds. Oxford Univesity Press.
Siskind, J. (1996). A computational study of cross-situational techniques for learning word-to-

meaning mappings. Cognition, 61, 31–91.
Smith, D. R. (1984). The synthesis of lisp programs from examples: A survey. In A. W. Biermann,

G. Guiho, & Y. Kodratoff (Eds.), Automatic program construction techniques (pp. 307–
324). Macmillan.

Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning. MIT Press.
Turing, A. M. (1936). On computable numbers, with an application to the entscheidungsproblem.

Proceedings of the London Mathematical Society, 2 (42), 230–265.
Ullman, T., Goodman, N., & Tenenbaum, J. (2012). Theory learning as stochastic search in the

language of thought. Cognitive Development, 455–480.
Ullman, T. D., Stuhlmüller, A., Goodman, N. D., & Tenenbaum, J. B. (2018). Learning physical

parameters from dynamic scenes. Cognitive psychology, 104, 57–82.
Xu, F. (2019). Towards a rational constructivist theory of cognitive development. Psychological

Review, 126 (6), 841–864.

17

