
Learning list concepts through program induction

Joshua Rule,1∗ Eric Schulz,2∗ Steven T. Piantadosi,3 & Joshua B. Tenenbaum1

1Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology
2Department of Psychology, Harvard University

3Department of Brain and Cognitive Sciences, University of Rochester
∗Contributed equally

Abstract

Humans master complex systems of interrelated concepts like
mathematics and natural language. Previous work suggests
learning these systems relies on iteratively and directly re-
vising a language-like conceptual representation. We intro-
duce and assess a novel concept learning paradigm called
Martha’s Magical Machines that captures complex relation-
ships between concepts. We model human concept learning in
this paradigm as a search in the space of term rewriting sys-
tems, previously developed as an abstract model of compu-
tation. Our model accurately predicts that participants learn
some transformations more easily than others and that they
learn harder concepts more easily using a bootstrapping cur-
riculum focused on their compositional parts. Our results sug-
gest that term rewriting systems may be a useful model of hu-
man conceptual representations.
Keywords: Concept learning; Program Induction; Induction;
Function learning; Curriculum learning; Bootstrap learning

Introduction
Human learning is astonishing, quickly mastering complex

systems of interrelated concepts using surprisingly little data

(Tenenbaum, Kemp, Griffiths, & Goodman, 2011). Under-

standing what concepts are and how humans learn them has

thus long been a key challenge for cognitive science (Bruner,

Goodnow, & Austin, 1956; Carey, 2009; Margolis & Lau-

rence, 1999, 2015; Murphy, 2002; Smith & Medin, 1981).

The challenge remains open, but this work builds on the hy-

potheses that: 1) concepts can be modeled as expressions in

a mental language or Language of Thought (LOT; e.g. Fodor,

1975); and 2) learning iteratively refines the LOT both by

naming compositions of smaller parts and developing truly

new representations (e.g. Carey, 2009).

Computational models have long worked to implement

these hypotheses using algorithms that learn program-like

structures from observations (Goodman, Tenenbaum, Feld-

man, & Griffiths, 2008; Lake, Salakhutdinov, & Tenen-

baum, 2015; Lenat, 1983; Newell, Shaw, & Simon, 1959; Pi-

antadosi, Tenenbaum, & Goodman, 2016; Sussman, 1973),

a technique known as inductive programming (Flener &

Schmid, 2008; Muggleton & De Raedt, 1994), part of the

broader field of program synthesis (Gulwani, Polozov, &

Singh, 2017). The language in which learning takes place

is typically fixed: primitives cannot be added or removed and

each primitive has a predetermined semantics, often based on

combinatory logic (CL; Dechter, Malmaud, Adams, & Tenen-

baum, 2013; Piantadosi, 2017), λ-calculus (LC; Piantadosi,

Tenenbaum, & Goodman, 2012), or first-order logic (FOL;

Goodman et al., 2008; Piantadosi et al., 2016; Ullman, Good-

man, & Tenenbaum, 2012). Learning searches through the

(potentially infinite) space of programs in the language to find

some to name and add to a library of expressions that help

explain observations. This library acts as an inductive bias

sitting on top of the base language, but crucially, the base

language itself never changes.

Humans undoubtedly reuse existing concepts, but they also

introduce placeholder concepts that acquire meaning through

conceptual role (Block, 1987; Carey, 2009). This is espe-

cially important as the scope of learning grows and primi-

tives for one domain (e.g. color concepts like red or blue)

work poorly in another (e.g. Newtonian mechanics). Rather

than only revising a library implemented in terms of some

fixed language, human learning is thus thought to also revise

the language itself. Models learning libraries over fixed lan-

guages cannot easily capture this second type of learning.

This paper makes two contributions toward resolving this

discrepancy. The first contribution is to introduce and assess

a novel concept learning paradigm called Martha’s Magical

Machines, inspired by Piantadosi et al. (2016). This paradigm

uses a game that lends itself well to studying complex re-

lationships between concepts and which participants report

to be fun and engaging. Participants predict how machines,

each representing a concept, transform sequences of num-

bered packages. Using this paradigm, we find that some con-

cepts are learned more easily than others and that a hard con-

cept is learned more easily when preceded by a bootstrapping

compositional curriculum.

The second contribution is to explore Term Rewriting Sys-

tems (TRSs) as a model of conceptual representations. TRSs

define a space of formal languages, specifying for each which

primitives exist and how they behave. We use this to provide

a model of concept learning similar to and inspired by ex-

isting models, but in which hypotheses represent not differ-

ent libraries atop a fixed LOT but completely different LOTs.

We model learning as a search directly among languages de-

fined by a probabilistic grammar over TRS rules. Other work

has learned TRSs to solve inductive programming tasks (e.g.

Kitzelmann & Schmid, 2006; Rao, 2004), but ours is the first,

to our knowledge, to directly compare a TRS-based learning

system with humans. Our model accurately predicts human

learning trajectories for different list concepts and explains

how a curriculum helps when learning challenging concepts.

Concepts come in diverse forms (e.g. objects, agents,

magnitudes, categories and kinds, relationships, and events).

Here, we focus on and use concept to refer to relationships

over objects, specifically, functions over data structures. It

would be surprising if these techniques failed to apply to other

types of concepts, but we do not explore that here.

Figure 1: Experiment graphics. a: Martha, the scientist. b: A mag-
ical machine. c: Packages display 0-9. d: Participants predicted
outputs (right side) for different inputs (left side). + makes another
package appear. Right-clicks remove packages. d: Input/output his-
tory. P shows past predictions. Try it at: https://git.io/vNbKc.

Experiment 1: Mapping the order of difficulty

Experiment 1 studied how people learn concepts from exam-

ples. In this experiment, participants sequentially predicted

how a concept would transform an input sequence into an

output sequence. To better understand what sorts of concepts

are easy or difficult for humans to learn, we created a set of

12 list concepts of varying complexity (see Listing 1).

Participants and Design We recruited 149 participants (61

female, mean age=36.93, SD=12.20) from Amazon Mechan-

ical Turk. Participants were paid a flat fee of $1. The experi-

ment took 16 minutes on average to complete.

Materials and Procedure Participants played a game

called Martha’s Magical Machines inspired by the paradigm

in Piantadosi et al. (2016). They helped a scientist, Martha

(Fig. 1a), study magical machines. Magical machines (e.g.

Fig. 1b) take numbered packages (i.e. a sequence of numbers)

as input and return numbered packages as output (Fig. 1c).

Participants were asked to predict outputs for different in-

puts. Each participant interacted with five magical machines,

one in each of five rounds. For each participant round, we

uniformly sampled a concept from a pool of twelve (see List-

ing 1) without replacement. If the sampled concept returned

a single natural number rather than a sequence, participants

saw a singleton sequence. Within each round, participants

completed 10 consecutive trials sampled randomly without

replacement from a pool of per-concept inputs.

On each trial, participants saw a sequence of one to five

packages waiting to be submitted to the machine (Fig. 1d)

and attempted to predict the machine’s corresponding output

sequence. After clicking Test, the input would be submitted

to the machine and the actual output produced. The history

of inputs, outputs, and participants’ responses was displayed

next to the machine (Fig. 1e). Once a participant submitted 10

predictions for a machine, they were asked to briefly describe

what they thought the machine did, and then moved to the

next round to interact with a new (visually distinct) machine.

The game finished after 5 rounds (i.e. 5 machines).

Results Figure 2 shows mean performance on the last 5 pre-

dictions for each block. Participants generally performed best

for concepts involving arithmetical operations (e.g. total,

Figure 2: Experiment 1 performance with concepts ordered by dif-
ficulty. Error bars represent the standard error of the mean. Left:
Average probability of a successful prediction over the last 5 trials.
Red triangles mark model predictions. Right: Average quality of
concept descriptions (0: no match; 2: perfect description).

increment). These concepts are likely already well-known;

learning then means recognizing that a particular machine

matches a pre-existing concept. We treat this recognition as

a simple form of induction, one which identifies a newly-

named concept with a pre-existing name rather than a newly-

discovered compositional expression. Concepts indexing the

sequence (e.g. index-in-head, head-or-tail) were gener-

ally harder to learn. Mean within-participant performance on

the first 5 trials strongly correlated with performance during

the last 5 trials over all rounds (r(148) = 0.80, p < .001);

some people consistently learned the concepts faster than

others. Performance weakly correlated with round number

(r(148) = 0.04, p = .019), but more strongly correlated with

trial number within a round (r(148) = 0.36, p < .001). Mean

scores on the first 5 trials were indeed significantly differ-

ent from mean scores on the last 5 trials over all problems

(t(149) = 22.04, p < .001, d = 1.8).

Participants learned the concepts, and additional trials led

to better performance. We thus analyzed how performance

evolved over trials using per-concept learning curves that we

also compare to the learning curves produced by our model

(Fig 3). For some concepts (e.g. total, const), participants

only needed 1-2 examples to perform near ceiling. Other con-

cepts (e.g. length or filter odd) show more graded, even

slow (e.g. count3, index-in-head) progress. Nonetheless,

we found significant positive correlations between trial num-

ber and performance for all problems (all p < .001, d f =
149); participants learn the concepts in this task, improving

their performance over time for every concept tested.

We also analyzed the verbal descriptions given for each

concept. Descriptions were coded as 0 if they did not re-

flect the concept (e.g. “it’s random”, “I don’t know”), 1

for partial correctness (e.g. “removes frequent numbers” for

deduplicate) and 2 for an exact match (e.g. “removes du-

plicates” for deduplicate). Figure 2 shows the average

quality of participant descriptions by concept. Description

codes correlate strongly with performance on the last 5 trials

(r(148) = 0.84, p < .001), suggesting that participants gener-

ated good predictions primarily by referencing the underlying

concepts rather than by guessing or using other heuristics.

Finally, we analyzed whether the order in which partici-

pants learned concepts influenced overall performance. We

compared the correlations between the block in which a

concept appeared and mean performance for the 3 hard-

est (count3, head-or-tail, index-in-head) and 3 easi-

est (const, total, increment) concepts. Block and per-

formance were significantly correlated for the hard concepts

(r(149) = 0.13, p < .01), but not for the easiest concepts

(r(149) = 0.04. p = .24). The difference between these cor-

relations was significant (z = 2.07, p < .05). Participants thus

might benefit by reserving harder problems for later rounds

of the experiment, an effect which we explore by examining

how curriculum design affects performance in Experiment 2.

const xs: return 3
Example: const ([1 ,2,4]) = [3]
const(x_) = 3;

total xs: sum all the elements of xs
Example: total ([1 ,2,3]) = [6]
total(x_) = sum(x_);

increment xs: add 1 to each element of xs
Example: increment ([1,2]) = [2,3]
increment(x_) = add(1 x_);

head xs: return the first element of xs
Example: head ([2 ,3,1]) = [2]
head(cons(x_ y_)) = x_;

length xs: compute the length of xs
Example: length ([2 ,3,1]) = [3]
length ([]) = 0;
length(cons(x_ y_)) = succ(length(y_));

sort xs: sort xs
Example: sort ([3,1]) = [1,3]
sort ([]) = [];
sort(cons(x_ y_)) = insert(x_ sort(y_));

deduplicate xs: remove all duplicates from xs
Example: deduplicate ([2 ,1,2,2,1]) = [2,1]
deduplicate ([]) = [];
deduplicate(cons(x_ y_)) =

cons(x_ deduplicate(remove(x_ y_)))

cumsum xs: cumulatively sum the elements of xs
Example: cumsum ([2 ,3,1]) = [2,5,6]
cumsum ([]) = [];
cumsum(cons(x_ y_)) = cons(x_ cumsum(add(x_ y_)))

filter_odd xs: remove the odd numbers from xs
Example: filter_odd ([2 ,3,1,4]) = [2,4]
filter_odd ([]) = [];
filter_odd(cons(x_ y_)) =

if(even?(x_) cons(x_ filter_odd(y_)) filter_odd(y_));

index-in-head xs: return the headth element of the xs
Example: index_in_head ([2,3]) = [3]
index-in-head(cons(0 y_)) = 0
index-in-head(cons(succ(x_) y_)) = nth(x_ y_);
head-or-tail: return the larger of head or sum-of-tail
Example: head_or_tail ([2 ,3,1]) = [4]
head-or-tail ([]) = 0;
head-or-tail(cons(x_ y_)) =

if(greater(x_ sum(y_)) x_ sum(y_));

count3 xs: how often does 3 appear in xs?
Example: count3 ([2 ,3,3]) = [2]
count3(x_) = count(succ(succ(succ(0))) x_);

Listing 1: Rewrite rules for the concepts in Experiment 1. See Table
1 for an explanation of the assumed background concepts.

0.95

0.94

0.78

0.71

0.81

0.76

0.77

0.69

0.68

0.87

0.70

0.77

Index in head Head or sum of tail Count 3

Deduplicate Cumsum Filter odd

Head Sort Length

Constant Total Increment

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

Trial

P
(C

o
rr

ec
t)

Figure 3: Experiment 1 concept learning curves ordered from easy
to difficult. Error bars represent the standard error. Solid curves
are human learners, dashed are model learners. Pearson correlations
between human and model learners are reported for each concept.

Experiment 2: Curriculum learning

Experiment 2 studied to what extent a difficult concept could

be made more learnable with a curriculum from which learn-

ers could bootstrap the difficult concept.

Participants and Design We recruited 91 participants (46

males, mean age=34.51, SD=10.57) from Amazon Mechani-

cal Turk and paid a flat fee of $1. The task took 12 minutes on

average to complete. Participants were randomly assigned to

one of two conditions (random or curriculum) in a between-

subjects design. Random learners attempted three randomly

chosen concepts before attempting the target concept. Cur-

riculum learners attempted concepts (count3, head, & tail)

relevant to the compositional structure of the target. Both

groups had the same target concept: count-head-in-tail.

Material and Procedure Participants played Martha’s

Magical Machines as in Experiment 1. However, whereas

curriculum learners saw three fixed concepts (order counter-

balanced; Listing 2) before attempting the target concept, ran-

dom learners interacted with three randomly chosen concepts

from Experiment 1 (matched in complexity and excluding the

curriculum; Listing 1) before attempting the target concept.

head xs: return the first element of xs

●

●

0

1

2

3

curriculum random
Training

#
c
o
rr

e
c
t

a

●

●

0.00

0.25

0.50

0.75

1.00

curriculum random
Training

Q
u
a
lit

y

b

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

0.0

0.2

0.4

0.6

0.8

1 2 3 4 5 6 7 8 9 10
Trial

P
(C

o
rr

e
c
t)

● ●curriculum random

c

●

●

0.00

0.25

0.50

0.75

1.00

curriculum random
Training

S
ta

n
d
a
rd

iz
e
d

 β

d

Figure 4: Experiment 2, by condition. a: mean number of cor-
rect predictions during last 5 trials. b: Average description quality
for last round. c: Learning curves (i.e. mean proportion of correct
predictions over trials). d: Standardized β-estimate regressing total
correct predictions in the first 3 rounds onto total correct predictions
in the target round. Error bars represent the standard error.

Example: head ([2 ,3,1]) = [2]
head(cons(x_ y_)) = x_;

tail xs: return all but the first element of xs
Example: tail ([2 ,3,3]) = [3,3]
tail ([]) = [];
tail(cons(x_ y_)) = y_;

count3 xs: how often does 3 appear in xs?
Example: count3 ([3 ,2,3]) = [2]
count3(x_) = count(succ(succ(succ(0))) x_);

count-head-in-tail xs: how often is head in the tail?
Example: count-head-in-tail ([2 ,3,2]) = [1]
count-head-in-tail ([]) = 0;
count-head-in-tail(x_) = count(head(x_) tail(x_));

Listing 2: Rewrite rules for the concepts in Experiment 2. See Table
1 for an explanation of the assumed background concepts.

Results We first analyzed performance during the last 5

trials of the target concept (Fig. 4a). Curriculum learners

performed significantly better than random learners (t(89) =
3.02, p < 0.01, d = 0.34). We again coded the quality of par-

ticipant descriptions for the target concept, using the scheme

from Experiment 1. Curriculum learners wrote better descrip-

tions than random learners (t(89) = 2.51, p = 0.01, d = 0.53,

Fig. 4b), although both scored weakly. More curriculum

learners scored 1 or 2 than random learners (χ2(2,91) =
8.46, p = .01). Six participants correctly described the con-

cept; four were curriculum learners. Of 19 participants with

partially correct descriptions, 15 were curriculum learners.

66 participants were completely incorrect; 38 were random

learners. Participant learning curves during the last round

(Fig. 4c) suggest that curriculum learners learned faster and

more accurately than random learners, in particular during

later trials. Finally, we analyzed how the first three rounds af-

fected performance in the target round. Curriculum learners

should be influenced more strongly by past performance, be-

cause the curriculum concepts are relevant to the target con-

cept. Performance on the first three rounds correlated signif-

icantly with performance on the target round for curriculum

learners (r(49) = 0.53 p < .001), but not for random learners

(r(38) = 0.23, p = .08); only curriculum learners benefited

by learning earlier concepts.

Model

Instead of searching over possible libraries for a fixed LOT,

some theories suggest that humans search directly over pos-

sible LOTs (e.g. Carey, 2009). We discuss Term Rewriting

Systems (TRSs) as a formalism for modeling this idea, treat-

ing learning as searching through a space of TRSs defined

by a probabilistic grammar over TRS rules. Model code is

available at: https://git.io/vNbK6.

Representing Concepts with Term Rewriting Systems

TRSs, developed and studied as an abstract model of compu-

tation, formalize the idea that symbolic forms of computation

can be described by trees of symbols, called terms, and rules

for how those terms compute. Other work describes TRSs in

detail (Bezem, Klop, & de Vrijer, 2003); we focus on appli-

cations to cognitive modeling.

A TRS has two parts: a set of operators (symbols with a

fixed arity) called a signature, and a set of rewrite rules. In

this work, each operator is also associated with a type to con-

strain search, preventing constructions which humans would

be unlikely to consider (e.g. computing the successor of a

list rather than of a number). For example, we could define

an operator for addition, plus, with arity 2 and type Nat ->

Nat -> Nat (take two natural numbers, Nats, as input and

give a Nat as output). Other examples include the number 0,

0, with arity 0 and type Nat, and the successor function, succ,

with arity 1 and type Nat -> Nat. Combined with a count-

ably infinite set of unique variables (written here with trailing

underscores), the signature recursively defines the set of pos-

sible terms to include: 1) variables; and 2) operators applied

to n subterms, where n is the arity of the operator. A simple

theory of unary addition might have the following signature:

{plus,succ,0}

In that case, the following are valid (∗invalid) terms. Assum-

ing that plus represents addition, s represents the successor

function, and 0 represents 0, the valid terms represent 0, 2,

and x+1+ y, respectively; invalid terms mean nothing:

0 succ(succ(0)) plus(plus(x succ(0)) y)

∗succ ∗x (0) ∗times(x y)

A rewrite rule, l = r, equates terms l and r, called the left-

hand-side (LHS) and right-hand-side (RHS), respectively. A

term t can be rewritten to t ′ under some TRS if: 1) t matches

against the LHS of a TRS rule to create a substitution (a struc-

tural mapping from variables in the LHS to subterms of t);

and 2) t ′ is the result of applying the substitution to the RHS.

Consider these rules for unary addition:

plus(0 y) = y (IDENTITY)

plus(succ(x) y) = succ(plus(x y)) (INCREMENT)

plus(succ(succ(0)) succ(0)) rewrites with these rules to

succ(succ(succ(0))) as follows (i.e. 2+1 = 3):

plus(succ(succ(0)) succ(0)) (GIVEN)

succ(plus(succ(0) succ(0))) (INCREMENT)

succ(succ(plus(0 succ(0)))) (INCREMENT)

succ(succ(succ(0))) (IDENTITY)

See Listings 1 & 2 for more examples of rewrite rules.

When using TRSs to model LOTs, each term expresses a

(potentially compositional) concept; the signature defines the

space of possible terms and thus the space of possible expres-

sions. By themselves, however, these expressions are nearly

meaningless. succ(succ(succ(0))), for example, might

express 3, a procedure for shaking someone’s hand, or a pic-

ture of a cat. Relating terms with rewrite rules constrains their

meaning. succ(succ(succ(0))) expresses 3 (or something

isomorphic to 3) only when coupled with rules that use it as

3. In the toy example given here, it expresses 3 only with re-

spect to addition. As additional operators and rules are added

which constrain its behavior more tightly, its meaning can be

further constrained to that of the familiar concept 3.

Learning Concepts with Stochastic Search Like many

existing models of concept learning as program induction, we

model learning as a Bayesian stochastic search (Lake et al.,

2015; Piantadosi et al., 2012,1; Ullman et al., 2012). To ease

search, we fixed the set of operators and provided rules con-

straining the behavior of several background concepts (Table

1). The hypothesis space is then the space of TRSs containing

these operators and at least these rules. Crucially, however,

the behavior of key operators in each simulation was entirely

determined by learned rewrite rules. Search thus directly re-

vises our LOT representation, rather than revising a library

implemented in terms of some fixed LOT.

Our model uses a description length prior; the log prior

probability of a TRS is the total number of subterms in the

rules. It uses an evaluation-based likelihood; the log likeli-

hood of an input/output pair is the log probability of the out-

put appearing as a normal form in a 50-step evaluation trace

rooted at the input. Search uses two types of proposals; one

deletes a rule uniformly at random from the hypothesis, and

the other samples a new rule and adds it to the hypothesis.

We sample new rules using a generative procedure that re-

lies heavily on types. It first creates a type variable to rep-

resent the type of the rule. It then unifies this type variable

against existing operators and variables, as well as a newly

created variable (though the LHS cannot be a lone variable;

such a rule would match every term). Of those elements

whose types unify, one is selected uniformly at random. If

the element is an operator with positive arity, the argument

types are computed, and the process recurses. Once the LHS

has been sampled, its final type is computed, and the RHS is

sampled using the same process, with two modifications: 1)

RHS sampling can use variables bound by the LHS but can-

not create new variables (this would allow rewrites to invent

arbitrary terms); and 2) the type of the RHS is fixed to match

the type of the LHS. This procedure defines and samples from

Name & Input/Output Pair Description

0, 1, 2 constant natural numbers
[] the empty list
succ(0) the successor of x
cons(1, [2,3]) = [1,2,3] prepend x to y
sum([1,2,3]) = [6] sum x
add(3, [1,2,3]) = [4,5,6] add x to the elements of y
insert(4, [3,5]) = [3,4,5] insert x into y in sorted order
remove(1, [6,1,4]) = [6,4] remove every x in y
count(7, [7,1,7] = [2]) count every x in y
even(5) = false true if x is even else false
greater(8, 2) = true true if x > y else false
if(true, [7], [2,5]) = [7] if x then y else z

nth(3, [9,5,8]) = [8] the xth element of y
Table 1: Background concepts used in the simulations. In the de-
scriptions, x is the first argument, y the second, and z the third.

a context-sensitive (the set of variables changes during sam-

pling) grammar over rewrite rules.

Simulation Details The simulations mimic Experiments 1

and 2 (See Table 1 for the assumed primitives). Each simu-

lation for Experiment 1 (2) began by running search for 1500

(500) iterations as described above. The likelihood was ini-

tially computed over an empty dataset (i.e. search was sensi-

tive only to the prior). After 1500 (500) iterations, the top

ten posterior hypotheses were evaluated on the first input,

and the most likely output returned as the prediction. After

the model had made its prediction, the correct input/output

pair was added to the model’s dataset, and another round of

search began, using this extended dataset when computing

the likelihood of each hypothesis. Inputs were sampled from

a generative model of natural number lists, and outputs were

computed by evaluating a ground-truth implementation of the

function on the sampled input. The number of iterations for

this new round was changed to 150%(3/2) of the previous

round’s iterations if an incorrect prediction was recorded and

to 67%(2/3) for a correct prediction, mimicking patterns of

cautiousness and confidence in human subjects. This pattern

repeated until 10 responses had been recorded (i.e. maximum

dataset size = 9). Thirty simulations were run for each con-

cept, simulating 30 unique subjects. Any learning effects that

might appear in Experiment 1 due to a randomly sampled but

nonetheless useful curriculum are being ignored here. Also,

unlike human participants, the simulation setup allowed us to

distinguish between outputs that were natural numbers and

outputs that were singleton lists; we thus did not require the

model to convert natural number outputs into singleton lists.

Results Our Experiment 1 simulations captured the diffi-

culty of learning across concepts, predicting mean human

performance with a mean correlation of (r(11) = 0.73, p <
.001, Fig 2). Importantly, our model produces averaged learn-

ing curves that correlated strongly with participant learning

curves (r = 0.78 p < .001, Fig 3). The partial correlation

between model predictions and participant learning curves,

controlled for the simple baseline of linear improvement over

time, was r = 0.42 with p < .01, suggesting that our model

produces human-like behavior for Experiment 1, even when

compared to a baseline model with a constant learning rate.

Our Experiment 2 simulations suggest a similar conclu-

sion. Mean simulation performance was significantly higher

for the curriculum condition than the random condition (30

runs, 2 conditions tracking up to 10 most likely hypothe-

ses, t(590) = 5.25, p < .001, d = 0.43, Fig 4a). Curriculum

condition simulations discovered correct implementations of

count-head-in-tail in 9 out of 30 runs; random condition

simulations succeeded in just 1 of 30 runs. These results sug-

gest that our model helps account for the benefit of a boot-

strapping curriculum in learning difficult concepts.

Discussion & Conclusion

We modeled human concept learning as program induction.

Our model searches directly in the space of LOTs (here,

Term Rewriting Systems) rather than in the space of li-

braries defined over a single, fixed LOT as is common in

other program-induction-based models. This shift is small,

but showing that this approach can explain traditional con-

cept learning tasks sets the stage for future work. Con-

ceptual change, whereby a learner abandons one primitive

basis in favor of another, is a key component of learning

(Carey, 2009). Library-learning models, however, cannot

easily model conceptual change; their primitive basis–the

underlying language–is fixed. Searching directly over lan-

guages, as in the model discussed here, is more appropriate.

In this initial and exploratory work, the identity of the prim-

itives and much of their semantics were fixed. Future work

must extend the model so that it can introduce placeholder

primitives, infer their types, and quickly relate them to exist-

ing primitives to constrain their meaning.

We also introduced Martha’s Magical Machines as a

paradigm for studying list concepts. We intend to develop

this paradigm to better explore what makes concepts easy

or hard to learn and how curricula can better bootstrap dif-

ficult concepts. We also plan to explore active learning in

this paradigm, giving participants control over which inputs

to test to better understand what they find informative. Our

findings suggest that the rich structure of list concepts pro-

vides a versatile domain for studying concept learning in

humans. Other richly structured domains, including com-

monsense theories (e.g. Mendelian genetics, number gram-

mars) and textual manipulations (e.g. 12 January 2009 7→
09/01/12), may also be interesting to explore in this paradigm.

Achieving these objectives will require sophisticated

search strategies which better exploit available data and the

program-like structure of conceptual representations. Effec-

tive strategies for manipulating computer programs may be

similar to strategies which human learners use to manipulate

program-like concepts in the mind; it may be useful to ex-

plore the strategies programmers use when actually program-

ming. Learning-to-learn strategies, allowing the programmer

to learn more efficaciously over time, are of particular inter-

est. Our models, like humans, should not only learn to model

the world around them, but they ought to simultaneously im-

prove the language they use to describe those models and the

tools by which both are learned.

Acknowledgements

JR and JBT are supported by the Center for Minds, Brains and Ma-

chines (CBMM), funded by NSF STC award CCF-1231216, and a

grant from the Air Force Office of Scientific Research. JR is sup-

ported by an NSF Graduate Research Fellowship. ES is supported

by the Harvard Data Science Initiative.

References
Bezem, M., Klop, J. W., & de Vrijer, R. (2003). Term rewriting

systems. Cambridge U. Press.
Block, N. (1987). Advertisement for a semantics for psychology.

Midwest Studies in Philosophy, 10(1), 615–678.
Bruner, J. S., Goodnow, J. J., & Austin, G. A. (1956). A study of

thinking. Science Editions.
Carey, S. (2009). The origin of concepts. Oxford U. Press.
Dechter, E., Malmaud, J., Adams, R. P., & Tenenbaum, J. B. (2013).

Bootstrap learning via modular concept discovery. In IJCAI,
(pp. 1302–1309).

Flener, P., & Schmid, U. (2008). An introduction to inductive pro-
gramming. AI Review, 29(1), 45–62.

Fodor, J. A. (1975). The language of thought. Harvard U. Press.
Goodman, N. D., Tenenbaum, J. B., Feldman, J., & Griffiths, T. L.

(2008). A rational analysis of rule-based concept learning.
Cognitive Science, 32(1), 108–154.

Gulwani, S., Polozov, O., & Singh, R. (2017). Program synthesis.
Foundations and Trends in Programming Languages, 4(1-2).

Kitzelmann, E., & Schmid, U. (2006). Inductive synthesis of func-
tional programs: An explanation based generalization ap-
proach. J. Machine Learning Research, 7, 429–454.

Lake, B. M., Salakhutdinov, R., & Tenenbaum, J. B. (2015). Human-
level concept learning through probabilistic program induc-
tion. Science, 350(6266), 1332–1338.

Lenat, D. B. (1983). EURISKO: A program that learns new heuris-
tics and domain concepts–the nature of heuristics III: Pro-
gram design and results. AI, 21, 61–98.

Margolis, E., & Laurence, S. (1999). Concepts: core readings. MIT
Press.

Margolis, E., & Laurence, S. (2015). The conceptual mind: new
directions in the study of concepts. MIT Press.

Muggleton, S., & De Raedt, L. (1994). Inductive logic program-
ming: Theory and methods. J. of Logic Programming, 19,
629–679.

Murphy, G. L. (2002). The big book of concepts (bradford books).
Newell, A., Shaw, J. C., & Simon, H. A. (1959). Report on a gen-

eral problem solving program. In IFIP Congress, vol. 256,
(p. 64).

Piantadosi, S. T. (2017). The computational origin of representation
and conceptual change. under revision.

Piantadosi, S. T., Tenenbaum, J. B., & Goodman, N. D. (2012).
Bootstrapping in a language of thought: A formal model of
numerical concept learning. Cognition, 123(2), 199–217.

Piantadosi, S. T., Tenenbaum, J. B., & Goodman, N. D. (2016). The
logical primitives of thought: Empirical foundations for com-
positional cognitive models. Psych. Review, 123(4), 392.

Rao, M. K. (2004). Inductive inference of term rewriting systems
from positive data. In International Conference on Algorith-
mic Learning Theory, (pp. 69–82). Springer.

Smith, E. E., & Medin, D. L. (1981). Categories and concepts.
Harvard U. Press.

Sussman, G. J. (1973). A computational model of skill acquisition.
Tenenbaum, J. B., Kemp, C., Griffiths, T. L., & Goodman, N. D.

(2011). How to grow a mind: Statistics, structure, and ab-
straction. Science, 331(6022), 1279–1285.

Ullman, T. D., Goodman, N. D., & Tenenbaum, J. B. (2012). The-
ory learning as stochastic search in the language of thought.
Cognitive Development, 27(4), 455–480.

